1,375 research outputs found

    EXIT-chart aided near-capacity quantum turbo code design

    No full text
    High detection complexity is the main impediment in future Gigabit-wireless systems. However, a quantum-based detector is capable of simultaneously detecting hundreds of user signals by virtue of its inherent parallel nature. This in turn requires near-capacity quantum error correction codes for protecting the constituent qubits of the quantum detector against the undesirable environmental decoherence. In this quest, we appropriately adapt the conventional non-binary EXtrinsic Information Transfer (EXIT) charts for quantum turbo codes by exploiting the intrinsic quantum-to-classical isomorphism. The EXIT chart analysis not only allows us to dispense with the time-consuming Monte-Carlo simulations, but also facilitates the design of near-capacity codes without resorting to the analysis of their distance spectra. We have demonstrated that our EXIT chart predictions are in line with the Monte-Carlo simulations results. We have also optimized the entanglement-assisted QTC using EXIT charts, which outperforms the existing distance spectra based QTCs. More explicitly, the performance of our optimized QTC is as close as 0.3 dB to the corresponding hashing bound

    Making Laplacians commute

    Full text link
    In this paper, we construct multimodal spectral geometry by finding a pair of closest commuting operators (CCO) to a given pair of Laplacians. The CCOs are jointly diagonalizable and hence have the same eigenbasis. Our construction naturally extends classical data analysis tools based on spectral geometry, such as diffusion maps and spectral clustering. We provide several synthetic and real examples of applications in dimensionality reduction, shape analysis, and clustering, demonstrating that our method better captures the inherent structure of multi-modal data
    • …
    corecore