241 research outputs found

    Superadditivity of Quantum Channel Coding Rate with Finite Blocklength Joint Measurements

    Full text link
    The maximum rate at which classical information can be reliably transmitted per use of a quantum channel strictly increases in general with NN, the number of channel outputs that are detected jointly by the quantum joint-detection receiver (JDR). This phenomenon is known as superadditivity of the maximum achievable information rate over a quantum channel. We study this phenomenon for a pure-state classical-quantum (cq) channel and provide a lower bound on CN/NC_N/N, the maximum information rate when the JDR is restricted to making joint measurements over no more than NN quantum channel outputs, while allowing arbitrary classical error correction. We also show the appearance of a superadditivity phenomenon---of mathematical resemblance to the aforesaid problem---in the channel capacity of a classical discrete memoryless channel (DMC) when a concatenated coding scheme is employed, and the inner decoder is forced to make hard decisions on NN-length inner codewords. Using this correspondence, we develop a unifying framework for the above two notions of superadditivity, and show that for our lower bound to CN/NC_N/N to be equal to a given fraction of the asymptotic capacity CC of the respective channel, NN must be proportional to V/C2V/C^2, where VV is the respective channel dispersion quantity.Comment: To appear in IEEE Transactions on Information Theor

    Exceeding classical capacity limit in quantum optical channel

    Full text link
    The amount of information transmissible through a communications channel is determined by the noise characteristics of the channel and by the quantities of available transmission resources. In classical information theory, the amount of transmissible information can be increased twice at most when the transmission resource (e.g. the code length, the bandwidth, the signal power) is doubled for fixed noise characteristics. In quantum information theory, however, the amount of information transmitted can increase even more than twice. We present a proof-of-principle demonstration of this super-additivity of classical capacity of a quantum channel by using the ternary symmetric states of a single photon, and by event selection from a weak coherent light source. We also show how the super-additive coding gain, even in a small code length, can boost the communication performance of conventional coding technique.Comment: 4 pages, 3 figure

    The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure

    Full text link
    Powerful Quantum Error Correction Codes (QECCs) are required for stabilizing and protecting fragile qubits against the undesirable effects of quantum decoherence. Similar to classical codes, hashing bound approaching QECCs may be designed by exploiting a concatenated code structure, which invokes iterative decoding. Therefore, in this paper we provide an extensive step-by-step tutorial for designing EXtrinsic Information Transfer (EXIT) chart aided concatenated quantum codes based on the underlying quantum-to-classical isomorphism. These design lessons are then exemplified in the context of our proposed Quantum Irregular Convolutional Code (QIRCC), which constitutes the outer component of a concatenated quantum code. The proposed QIRCC can be dynamically adapted to match any given inner code using EXIT charts, hence achieving a performance close to the hashing bound. It is demonstrated that our QIRCC-based optimized design is capable of operating within 0.4 dB of the noise limit

    Sequential decoding of a general classical-quantum channel

    Get PDF
    Since a quantum measurement generally disturbs the state of a quantum system, one might think that it should not be possible for a sender and receiver to communicate reliably when the receiver performs a large number of sequential measurements to determine the message of the sender. We show here that this intuition is not true, by demonstrating that a sequential decoding strategy works well even in the most general "one-shot" regime, where we are given a single instance of a channel and wish to determine the maximal number of bits that can be communicated up to a small failure probability. This result follows by generalizing a non-commutative union bound to apply for a sequence of general measurements. We also demonstrate two ways in which a receiver can recover a state close to the original state after it has been decoded by a sequence of measurements that each succeed with high probability. The second of these methods will be useful in realizing an efficient decoder for fully quantum polar codes, should a method ever be found to realize an efficient decoder for classical-quantum polar codes.Comment: 12 pages; accepted for publication in the Proceedings of the Royal Society

    The problem with the SURF scheme

    Get PDF
    There is a serious problem with one of the assumptions made in the security proof of the SURF scheme. This problem turns out to be easy in the regime of parameters needed for the SURF scheme to work. We give afterwards the old version of the paper for the reader's convenience.Comment: Warning : we found a serious problem in the security proof of the SURF scheme. We explain this problem here and give the old version of the paper afterward

    Information-theoretic Physical Layer Security for Satellite Channels

    Full text link
    Shannon introduced the classic model of a cryptosystem in 1949, where Eve has access to an identical copy of the cyphertext that Alice sends to Bob. Shannon defined perfect secrecy to be the case when the mutual information between the plaintext and the cyphertext is zero. Perfect secrecy is motivated by error-free transmission and requires that Bob and Alice share a secret key. Wyner in 1975 and later I.~Csisz\'ar and J.~K\"orner in 1978 modified the Shannon model assuming that the channels are noisy and proved that secrecy can be achieved without sharing a secret key. This model is called wiretap channel model and secrecy capacity is known when Eve's channel is noisier than Bob's channel. In this paper we review the concept of wiretap coding from the satellite channel viewpoint. We also review subsequently introduced stronger secrecy levels which can be numerically quantified and are keyless unconditionally secure under certain assumptions. We introduce the general construction of wiretap coding and analyse its applicability for a typical satellite channel. From our analysis we discuss the potential of keyless information theoretic physical layer security for satellite channels based on wiretap coding. We also identify system design implications for enabling simultaneous operation with additional information theoretic security protocols

    Implementation of generalized quantum measurements: superadditive quantum coding, accessible information extraction, and classical capacity limit

    Full text link
    Quantum information theory predicts that when the transmission resource is doubled in quantum channels, the amount of information transmitted can be increased more than twice by quantum channel coding technique, whereas the increase is at most twice in classical information theory. This remarkable feature, the superadditive quantum coding gain, can be implemented by appropriate choices of code words and corresponding quantum decoding which requires a collective quantum measurement. Recently, the first experimental demonstration was reported [Phys. Rev. Lett. 90, 167906 (2003)]. The purpose of this paper is to describe our experiment in detail. Particularly, a design strategy of quantum collective decoding in physical quantum circuits is emphasized. We also address the practical implication of the gain on communication performance by introducing the quantum-classical hybrid coding scheme. We show how the superadditive quantum coding gain, even in a small code length, can boost the communication performance of conventional coding technique.Comment: 15 pages, 14 figure

    Optical codeword demodulation with error rates below standard quantum limit using a conditional nulling receiver

    Full text link
    The quantum states of two laser pulses---coherent states---are never mutually orthogonal, making perfect discrimination impossible. Even so, coherent states can achieve the ultimate quantum limit for capacity of a classical channel, the Holevo capacity. Attaining this requires the receiver to make joint-detection measurements on long codeword blocks, optical implementations of which remain unknown. We report the first experimental demonstration of a joint-detection receiver, demodulating quaternary pulse-position-modulation (PPM) codewords at a word error rate of up to 40% (2.2 dB) below that attained with direct-detection, the largest error-rate improvement over the standard quantum limit reported to date. This is accomplished with a conditional nulling receiver, which uses optimized-amplitude coherent pulse nulling, single photon detection and quantum feedforward. We further show how this translates into coding complexity improvements for practical PPM systems, such as in deep-space communication. We anticipate our experiment to motivate future work towards building Holevo-capacity-achieving joint-detection receivers.Comment: 6 pages, 4 figure
    • …
    corecore