6,941 research outputs found

    Quantum error-correcting codes associated with graphs

    Full text link
    We present a construction scheme for quantum error correcting codes. The basic ingredients are a graph and a finite abelian group, from which the code can explicitly be obtained. We prove necessary and sufficient conditions for the graph such that the resulting code corrects a certain number of errors. This allows a simple verification of the 1-error correcting property of fivefold codes in any dimension. As new examples we construct a large class of codes saturating the singleton bound, as well as a tenfold code detecting 3 errors.Comment: 8 pages revtex, 5 figure

    Sparse Graph Codes for Quantum Error-Correction

    Full text link
    We present sparse graph codes appropriate for use in quantum error-correction. Quantum error-correcting codes based on sparse graphs are of interest for three reasons. First, the best codes currently known for classical channels are based on sparse graphs. Second, sparse graph codes keep the number of quantum interactions associated with the quantum error correction process small: a constant number per quantum bit, independent of the blocklength. Third, sparse graph codes often offer great flexibility with respect to blocklength and rate. We believe some of the codes we present are unsurpassed by previously published quantum error-correcting codes.Comment: Version 7.3e: 42 pages. Extended version, Feb 2004. A shortened version was resubmitted to IEEE Transactions on Information Theory Jan 20, 200

    Scheme for constructing graphs associated with stabilizer quantum codes

    Full text link
    We propose a systematic scheme for the construction of graphs associated with binary stabilizer codes. The scheme is characterized by three main steps: first, the stabilizer code is realized as a codeword-stabilized (CWS) quantum code; second, the canonical form of the CWS code is uncovered; third, the input vertices are attached to the graphs. To check the effectiveness of the scheme, we discuss several graphical constructions of various useful stabilizer codes characterized by single and multi-qubit encoding operators. In particular, the error-correcting capabilities of such quantum codes are verified in graph-theoretic terms as originally advocated by Schlingemann and Werner. Finally, possible generalizations of our scheme for the graphical construction of both (stabilizer and nonadditive) nonbinary and continuous-variable quantum codes are briefly addressed.Comment: 42 pages, 12 figure

    On the Minimum Degree up to Local Complementation: Bounds and Complexity

    Full text link
    The local minimum degree of a graph is the minimum degree reached by means of a series of local complementations. In this paper, we investigate on this quantity which plays an important role in quantum computation and quantum error correcting codes. First, we show that the local minimum degree of the Paley graph of order p is greater than sqrt{p} - 3/2, which is, up to our knowledge, the highest known bound on an explicit family of graphs. Probabilistic methods allows us to derive the existence of an infinite number of graphs whose local minimum degree is linear in their order with constant 0.189 for graphs in general and 0.110 for bipartite graphs. As regards the computational complexity of the decision problem associated with the local minimum degree, we show that it is NP-complete and that there exists no k-approximation algorithm for this problem for any constant k unless P = NP.Comment: 11 page

    Quantum computation with Turaev-Viro codes

    Full text link
    The Turaev-Viro invariant for a closed 3-manifold is defined as the contraction of a certain tensor network. The tensors correspond to tetrahedra in a triangulation of the manifold, with values determined by a fixed spherical category. For a manifold with boundary, the tensor network has free indices that can be associated to qudits, and its contraction gives the coefficients of a quantum error-correcting code. The code has local stabilizers determined by Levin and Wen. For example, applied to the genus-one handlebody using the Z_2 category, this construction yields the well-known toric code. For other categories, such as the Fibonacci category, the construction realizes a non-abelian anyon model over a discrete lattice. By studying braid group representations acting on equivalence classes of colored ribbon graphs embedded in a punctured sphere, we identify the anyons, and give a simple recipe for mapping fusion basis states of the doubled category to ribbon graphs. We explain how suitable initial states can be prepared efficiently, how to implement braids, by successively changing the triangulation using a fixed five-qudit local unitary gate, and how to measure the topological charge. Combined with known universality results for anyonic systems, this provides a large family of schemes for quantum computation based on local deformations of stabilizer codes. These schemes may serve as a starting point for developing fault-tolerance schemes using continuous stabilizer measurements and active error-correction.Comment: 53 pages, LaTeX + 199 eps figure

    Quantum Stabilizer Codes, Lattices, and CFTs

    Get PDF
    There is a rich connection between classical error-correcting codes, Euclidean lattices, and chiral conformal field theories. Here we show that quantum error-correcting codes, those of the stabilizer type, are related to Lorentzian lattices and non-chiral CFTs. More specifically, real self-dual stabilizer codes can be associated with even self-dual Lorentzian lattices, and thus define Narain CFTs. We dub the resulting theories code CFTs and study their properties. T-duality transformations of a code CFT, at the level of the underlying code, reduce to code equivalences. By means of such equivalences, any stabilizer code can be reduced to a graph code. We can therefore represent code CFTs by graphs. We study code CFTs with small central charge c = n ≤ 12, and find many interesting examples. Among them is a non-chiral E8 theory, which is based on the root lattice of E8 understood as an even self-dual Lorentzian lattice. By analyzing all graphs with n ≤ 8 nodes we find many pairs and triples of physically distinct isospectral theories. We also construct numerous modular invariant functions satisfying all the basic properties expected of the CFT partition function, yet which are not partition functions of any known CFTs. We consider the ensemble average over all code theories, calculate the corresponding partition function, and discuss its possible holographic interpretation. The paper is written in a self-contained manner, and includes an extensive pedagogical introduction and many explicit examples

    Relation between spectra of Narain CFTs and properties of associated boolean functions

    Full text link
    Recently, the construction of Narain CFT from a certain class of quantum error correcting codes has been discovered. In particular, the spectral gap of Narain CFT corresponds to the binary distance of the code, not the genuine Hamming distance. In this paper, we show that the binary distance is identical to the so-called EPC distance of the boolean function uniquely associated with the quantum code. Therefore, seeking Narain CFT with high spectral gap is equivalent to getting a boolean function with high EPC distance. Furthermore, this problem can be addressed by finding lower Peak-to-Average Power ratio (PAR) with respect to the binary truth table of the boolean function. Though this is neither sufficient nor necessary condition for high EPC distance, we construct some examples of relatively high EPC distances referring to the constructions for lower PAR. We also see that codes with high distance are related to induced graphs with low independence numbers.Comment: 27 pages, 1 figur

    Codeword stabilized quantum codes: algorithm and structure

    Full text link
    The codeword stabilized ("CWS") quantum codes formalism presents a unifying approach to both additive and nonadditive quantum error-correcting codes (arXiv:0708.1021). This formalism reduces the problem of constructing such quantum codes to finding a binary classical code correcting an error pattern induced by a graph state. Finding such a classical code can be very difficult. Here, we consider an algorithm which maps the search for CWS codes to a problem of identifying maximum cliques in a graph. While solving this problem is in general very hard, we prove three structure theorems which reduce the search space, specifying certain admissible and optimal ((n,K,d)) additive codes. In particular, we find there does not exist any ((7,3,3)) CWS code though the linear programming bound does not rule it out. The complexity of the CWS search algorithm is compared with the contrasting method introduced by Aggarwal and Calderbank (arXiv:cs/0610159).Comment: 11 pages, 1 figur
    • …
    corecore