17,798 research outputs found

    Monotonicity of the quantum linear programming bound

    Get PDF
    The most powerful technique known at present for bounding the size of quantum codes of prescribed minimum distance is the quantum linear programming bound. Unlike the classical linear programming bound, it is not immediately obvious that if the quantum linear programming constraints are satisfiable for dimension K, that the constraints can be satisfied for all lower dimensions. We show that the quantum linear programming bound is indeed monotonic in this sense, and give an explicitly monotonic reformulation.Comment: 5 pages, AMSTe

    Observational Signatures of Quantum Gravity in Interferometers

    Get PDF
    We consider the uncertainty in the arm length of an interferometer due to metric fluctuations from the quantum nature of gravity, proposing a concrete microscopic model of energy fluctuations in holographic degrees of freedom on the surface bounding a causally connected region of spacetime. In our model, fluctuations longitudinal to the beam direction accumulate in the infrared and feature strong long distance correlation in the transverse direction. This leads to a signal that could be observed in a gravitational wave interferometer. We connect the positional uncertainty principle arising from our calculations to the 't Hooft gravitational S-matrix.Comment: 6 pages, 1 figur

    Bounding quantum gate error rate based on reported average fidelity

    Full text link
    Remarkable experimental advances in quantum computing are exemplified by recent announcements of impressive average gate fidelities exceeding 99.9% for single-qubit gates and 99% for two-qubit gates. Although these high numbers engender optimism that fault-tolerant quantum computing is within reach, the connection of average gate fidelity with fault-tolerance requirements is not direct. Here we use reported average gate fidelity to determine an upper bound on the quantum-gate error rate, which is the appropriate metric for assessing progress towards fault-tolerant quantum computation, and we demonstrate that this bound is asymptotically tight for general noise. Although this bound is unlikely to be saturated by experimental noise, we demonstrate using explicit examples that the bound indicates a realistic deviation between the true error rate and the reported average fidelity. We introduce the Pauli distance as a measure of this deviation, and we show that knowledge of the Pauli distance enables tighter estimates of the error rate of quantum gates.Comment: New Journal of Physics Fast Track Communication. Gold open access journa
    corecore