19,810 research outputs found

    Quantum deconvolution

    Full text link
    We propose a method for stably removing noise from measurements of a quantum many-body system. The question is cast to a linear inverse problem by using a quantum Fischer information metric as figure of merit. This requires the ability to compute the adjoint of the noise channel with respect to the metric, which can be done analytically when the metric is evaluated at a Gaussian (quasi-free) state. This approach can be applied effectively to n-point functions of a quantum field theory. For translation invariant noise, this yields a stable deconvolution method on the first moments of the field which differs from what one would obtain from a purely classical analysis

    Simple method for sub-diffraction resolution imaging of cellular structures on standard confocal microscopes by three-photon absorption of quantum dots

    Get PDF
    This study describes a simple technique that improves a recently developed 3D sub-diffraction imaging method based on three-photon absorption of commercially available quantum dots. The method combines imaging of biological samples via tri-exciton generation in quantum dots with deconvolution and spectral multiplexing, resulting in a novel approach for multi-color imaging of even thick biological samples at a 1.4 to 1.9-fold better spatial resolution. This approach is realized on a conventional confocal microscope equipped with standard continuous-wave lasers. We demonstrate the potential of multi-color tri-exciton imaging of quantum dots combined with deconvolution on viral vesicles in lentivirally transduced cells as well as intermediate filaments in three-dimensional clusters of mouse-derived neural stem cells (neurospheres) and dense microtubuli arrays in myotubes formed by stacks of differentiated C2C12 myoblasts

    A measurement-based approach to quantum arrival times

    Get PDF
    For a quantum-mechanically spread-out particle we investigate a method for determining its arrival time at a specific location. The procedure is based on the emission of a first photon from a two-level system moving into a laser-illuminated region. The resulting temporal distribution is explicitly calculated for the one-dimensional case and compared with axiomatically proposed expressions. As a main result we show that by means of a deconvolution one obtains the well known quantum mechanical probability flux of the particle at the location as a limiting distribution.Comment: 11 pages, 4 figures, submitted to Phys. Rev.

    Coherent Processing of a Qubit Using One Squeezed State

    Full text link
    We use a single squeezed state to represent a qubit, which can be coherently processed in a deconvolution picture (DP) in the presence of noise. We avail ourselves of the fact that when evolution is governed by a quadratic dissipative equation, there exists a basis of squeezed states that evolves to another basis of such states in the DP. An operator acts as an impurity filter, restoring the coherence lost from the inexorable interactions of the qubit with its surroundings.Comment: Published version includes one new section and some reorganizatio

    Mammographic image restoration using maximum entropy deconvolution

    Get PDF
    An image restoration approach based on a Bayesian maximum entropy method (MEM) has been applied to a radiological image deconvolution problem, that of reduction of geometric blurring in magnification mammography. The aim of the work is to demonstrate an improvement in image spatial resolution in realistic noisy radiological images with no associated penalty in terms of reduction in the signal-to-noise ratio perceived by the observer. Images of the TORMAM mammographic image quality phantom were recorded using the standard magnification settings of 1.8 magnification/fine focus and also at 1.8 magnification/broad focus and 3.0 magnification/fine focus; the latter two arrangements would normally give rise to unacceptable geometric blurring. Measured point-spread functions were used in conjunction with the MEM image processing to de-blur these images. The results are presented as comparative images of phantom test features and as observer scores for the raw and processed images. Visualization of high resolution features and the total image scores for the test phantom were improved by the application of the MEM processing. It is argued that this successful demonstration of image de-blurring in noisy radiological images offers the possibility of weakening the link between focal spot size and geometric blurring in radiology, thus opening up new approaches to system optimization.Comment: 18 pages, 10 figure

    Calculated and measured Auger lineshapes in clean Si(100)2×1, SiOx and Si-NO

    Get PDF
    The measurements were performed on the clean 2*1 reconstructed Si(100) surface and this surface exposed to molecular oxygen (O2) or nitric oxide (NO) at room temperature. The data were corrected for electron loss and spectrometer distortions using the authors' newly developed deconvolution method. This method which uses global approximation and spline functions can overcome several difficulties with respect to deconvolution and allows them to derive high-quality auger lineshapes from the SiL2.3 VV Auger electron spectra. The authors experimentally obtained Auger lineshapes were compared with theoretical lineshapes utilising quantum chemical cluster calculations. They used this type of calculation for the interpretation of the Auger lineshape in the actual p-like and s-like partial local density of states for different types of silicon atom. The observed intensities of the major features are in reasonable agreement with the authors' calculations
    • 

    corecore