87,792 research outputs found

    Functionalisation of colloidal transition metal sulphides nanocrystals: A fascinating and challenging playground for the chemist

    Get PDF
    Metal sulphides, and in particular transition metal sulphide colloids, are a broad, versatile and exciting class of inorganic compounds which deserve growing interest and attention ascribable to the functional properties that many of them display. With respect to their oxide homologues, however, they are characterised by noticeably different chemical, structural and hence functional features. Their potential applications span several fields, and in many of the foreseen applications (e.g., in bioimaging and related fields), the achievement of stable colloidal suspensions of metal sulphides is highly desirable or either an unavoidable requirement to be met. To this aim, robust functionalisation strategies should be devised, which however are, with respect to metal or metal oxides colloids, much more challenging. This has to be ascribed, inter alia, also to the still limited knowledge of the sulphides surface chemistry, particularly when comparing it to the better established, though multifaceted, oxide surface chemistry. A ground-breaking endeavour in this field is hence the detailed understanding of the nature of the complex surface chemistry of transition metal sulphides, which ideally requires an integrated experimental and modelling approach. In this review, an overview of the state-of-the-art on the existing examples of functionalisation of transition metal sulphides is provided, also by focusing on selected case studies, exemplifying the manifold nature of this class of binary inorganic compounds

    Chemical and photochemical properties of chloroharmine derivatives in aqueous solutions

    Get PDF
    Thermal and photochemical stability (ΦR), room temperature UV-vis absorption and fluorescence spectra, fluorescence quantum yields (ΦF) and lifetimes (τF), quantum yields of hydrogen peroxide (ΦH2O2) and singlet oxygen (ΦΔ) production, and triplet lifetimes (τT) have been obtained for the neutral and protonated forms of 6-chloroharmine, 8-chloroharmine and 6,8-dichloroharmine, in aqueous media. When it was possible, the effect of pH and oxygen concentration was evaluated. The nature of electronic transitions of protonated and neutral species of the three investigated chloroharmines was established using Time-Dependent Density Functional Theory (TD-DFT) calculations. The impact of all the foregoing observations on the biological role of the studied compounds is discussed.Fil: Rasse Suriani, Federico Ariel Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Denofrio, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Yañuk, Juan Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Gonzalez, Maria Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Wolcan, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Seifermann, Marco. University of Mainz; AlemaniaFil: Erra Balsells, Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; ArgentinaFil: Cabrerizo, Franco Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentin

    Shannon Entropy and Many-Electron Correlations: Theoretical Concepts, Numerical Results and Collins Conjecture

    Full text link
    In this paper I will discuss the overlap between the concept of Shannon Entropy and the concept of electronic correlation. Quantum Monte Carlo numerical results for the uniform electron gas are also presented; these latter on the one hand enhance the hypothesis of a direct link between the two concepts but on the other hand leave a series of open questions which may be employed to trace a roadmap for the future research in the field.Comment: 27 pages with 3 figure

    Alchemical and structural distribution based representation for improved QML

    Full text link
    We introduce a representation of any atom in any chemical environment for the generation of efficient quantum machine learning (QML) models of common electronic ground-state properties. The representation is based on scaled distribution functions explicitly accounting for elemental and structural degrees of freedom. Resulting QML models afford very favorable learning curves for properties of out-of-sample systems including organic molecules, non-covalently bonded protein side-chains, (H2_2O)40_{40}-clusters, as well as diverse crystals. The elemental components help to lower the learning curves, and, through interpolation across the periodic table, even enable "alchemical extrapolation" to covalent bonding between elements not part of training, as evinced for single, double, and triple bonds among main-group elements

    Machine Learning of Molecular Electronic Properties in Chemical Compound Space

    Get PDF
    The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel, and predictive structure-property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning (ML) model, trained on a data base of \textit{ab initio} calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity, and excitation energies. The ML model is based on a deep multi-task artificial neural network, exploiting underlying correlations between various molecular properties. The input is identical to \emph{ab initio} methods, \emph{i.e.} nuclear charges and Cartesian coordinates of all atoms. For small organic molecules the accuracy of such a "Quantum Machine" is similar, and sometimes superior, to modern quantum-chemical methods---at negligible computational cost

    Synthesis of Colloidal Mn2+:ZnO Quantum Dots and High-TC Ferromagnetic Nanocrystalline Thin Films

    Get PDF
    We report the synthesis of colloidal Mn2+-doped ZnO (Mn2+:ZnO) quantum dots and the preparation of room-temperature ferromagnetic nanocrystalline thin films. Mn2+:ZnO nanocrystals were prepared by a hydrolysis and condensation reaction in DMSO under atmospheric conditions. Synthesis was monitored by electronic absorption and electron paramagnetic resonance (EPR) spectroscopies. Zn(OAc)2 was found to strongly inhibit oxidation of Mn2+ by O2, allowing the synthesis of Mn2+:ZnO to be performed aerobically. Mn2+ ions were removed from the surfaces of as-prepared nanocrystals using dodecylamine to yield high-quality internally doped Mn2+:ZnO colloids of nearly spherical shape and uniform diameter (6.1 +/- 0.7 nm). Simulations of the highly resolved X- and Q-band nanocrystal EPR spectra, combined with quantitative analysis of magnetic susceptibilities, confirmed that the manganese is substitutionally incorporated into the ZnO nanocrystals as Mn2+ with very homogeneous speciation, differing from bulk Mn2+:ZnO only in the magnitude of D-strain. Robust ferromagnetism was observed in spin-coated thin films of the nanocrystals, with 300 K saturation moments as large as 1.35 Bohr magneton/Mn2+ and TC > 350 K. A distinct ferromagnetic resonance signal was observed in the EPR spectra of the ferromagnetic films. The occurrence of ferromagnetism in Mn2+:ZnO and its dependence on synthetic variables are discussed in the context of these and previous theoretical and experimental results.Comment: To be published in the Journal of the American Chemical Society Web on July 14, 2004 (http://dx.doi.org/10.1021/ja048427j

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF
    corecore