1,168 research outputs found

    Quantum Block and Convolutional Codes from Self-orthogonal Product Codes

    Get PDF
    We present a construction of self-orthogonal codes using product codes. From the resulting codes, one can construct both block quantum error-correcting codes and quantum convolutional codes. We show that from the examples of convolutional codes found, we can derive ordinary quantum error-correcting codes using tail-biting with parameters [[42N,24N,3]]_2. While it is known that the product construction cannot improve the rate in the classical case, we show that this can happen for quantum codes: we show that a code [[15,7,3]]_2 is obtained by the product of a code [[5,1,3]]_2 with a suitable code.Comment: 5 pages, paper presented at the 2005 IEEE International Symposium on Information Theor

    Convolutional and tail-biting quantum error-correcting codes

    Full text link
    Rate-(n-2)/n unrestricted and CSS-type quantum convolutional codes with up to 4096 states and minimum distances up to 10 are constructed as stabilizer codes from classical self-orthogonal rate-1/n F_4-linear and binary linear convolutional codes, respectively. These codes generally have higher rate and less decoding complexity than comparable quantum block codes or previous quantum convolutional codes. Rate-(n-2)/n block stabilizer codes with the same rate and error-correction capability and essentially the same decoding algorithms are derived from these convolutional codes via tail-biting.Comment: 30 pages. Submitted to IEEE Transactions on Information Theory. Minor revisions after first round of review

    Simple Rate-1/3 Convolutional and Tail-Biting Quantum Error-Correcting Codes

    Full text link
    Simple rate-1/3 single-error-correcting unrestricted and CSS-type quantum convolutional codes are constructed from classical self-orthogonal \F_4-linear and \F_2-linear convolutional codes, respectively. These quantum convolutional codes have higher rate than comparable quantum block codes or previous quantum convolutional codes, and are simple to decode. A block single-error-correcting [9, 3, 3] tail-biting code is derived from the unrestricted convolutional code, and similarly a [15, 5, 3] CSS-type block code from the CSS-type convolutional code.Comment: 5 pages; to appear in Proceedings of 2005 IEEE International Symposium on Information Theor

    Constructions of Quantum Convolutional Codes

    Get PDF
    We address the problems of constructing quantum convolutional codes (QCCs) and of encoding them. The first construction is a CSS-type construction which allows us to find QCCs of rate 2/4. The second construction yields a quantum convolutional code by applying a product code construction to an arbitrary classical convolutional code and an arbitrary quantum block code. We show that the resulting codes have highly structured and efficient encoders. Furthermore, we show that the resulting quantum circuits have finite depth, independent of the lengths of the input stream, and show that this depth is polynomial in the degree and frame size of the code.Comment: 5 pages, to appear in the Proceedings of the 2007 IEEE International Symposium on Information Theor

    The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure

    Full text link
    Powerful Quantum Error Correction Codes (QECCs) are required for stabilizing and protecting fragile qubits against the undesirable effects of quantum decoherence. Similar to classical codes, hashing bound approaching QECCs may be designed by exploiting a concatenated code structure, which invokes iterative decoding. Therefore, in this paper we provide an extensive step-by-step tutorial for designing EXtrinsic Information Transfer (EXIT) chart aided concatenated quantum codes based on the underlying quantum-to-classical isomorphism. These design lessons are then exemplified in the context of our proposed Quantum Irregular Convolutional Code (QIRCC), which constitutes the outer component of a concatenated quantum code. The proposed QIRCC can be dynamically adapted to match any given inner code using EXIT charts, hence achieving a performance close to the hashing bound. It is demonstrated that our QIRCC-based optimized design is capable of operating within 0.4 dB of the noise limit

    Quantum Convolutional BCH Codes

    Full text link
    Quantum convolutional codes can be used to protect a sequence of qubits of arbitrary length against decoherence. We introduce two new families of quantum convolutional codes. Our construction is based on an algebraic method which allows to construct classical convolutional codes from block codes, in particular BCH codes. These codes have the property that they contain their Euclidean, respectively Hermitian, dual codes. Hence, they can be used to define quantum convolutional codes by the stabilizer code construction. We compute BCH-like bounds on the free distances which can be controlled as in the case of block codes, and establish that the codes have non-catastrophic encoders.Comment: 4 pages, minor changes, accepted for publication at the 10th Canadian Workshop on Information Theory (CWIT'07

    Quantum convolutional data-syndrome codes

    Full text link
    We consider performance of a simple quantum convolutional code in a fault-tolerant regime using several syndrome measurement/decoding strategies and three different error models, including the circuit model.Comment: Abstract submitted for The 20th IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC 2019

    Non-catastrophic Encoders and Encoder Inverses for Quantum Convolutional Codes

    Full text link
    We present an algorithm to construct quantum circuits for encoding and inverse encoding of quantum convolutional codes. We show that any quantum convolutional code contains a subcode of finite index which has a non-catastrophic encoding circuit. Our work generalizes the conditions for non-catastrophic encoders derived in a paper by Ollivier and Tillich (quant-ph/0401134) which are applicable only for a restricted class of quantum convolutional codes. We also show that the encoders and their inverses constructed by our method naturally can be applied online, i.e., qubits can be sent and received with constant delay.Comment: 6 pages, 1 figure, submitted to 2006 IEEE International Symposium on Information Theor
    • …
    corecore