1,139 research outputs found

    Quantum Approximation II. Sobolev Embeddings

    Get PDF
    A basic problem of approximation theory, the approximation of functions from the Sobolev space W_p^r([0,1]^d) in the norm of L_q([0,1]^d), is considered from the point of view of quantum computation. We determine the quantum query complexity of this problem (up to logarithmic factors). It turns out that in certain regions of the domain of parameters p,q,r,d quantum computation can reach a speedup of roughly squaring the rate of convergence of classical deterministic or randomized approximation methods. There are other regions were the best possible rates coincide for all three settings.Comment: 23 pages, paper submitted to the Journal of Complexit

    An effective mass theorem for the bidimensional electron gas in a strong magnetic field

    Full text link
    We study the limiting behavior of a singularly perturbed Schr\"odinger-Poisson system describing a 3-dimensional electron gas strongly confined in the vicinity of a plane (x,y)(x,y) and subject to a strong uniform magnetic field in the plane of the gas. The coupled effects of the confinement and of the magnetic field induce fast oscillations in time that need to be averaged out. We obtain at the limit a system of 2-dimensional Schr\"odinger equations in the plane (x,y)(x,y), coupled through an effective selfconsistent electrical potential. In the direction perpendicular to the magnetic field, the electron mass is modified by the field, as the result of an averaging of the cyclotron motion. The main tools of the analysis are the adaptation of the second order long-time averaging theory of ODEs to our PDEs context, and the use of a Sobolev scale adapted to the confinement operator
    corecore