22,856 research outputs found

    Quantum Algorithms for the Triangle Problem

    Full text link
    We present two new quantum algorithms that either find a triangle (a copy of K3K_{3}) in an undirected graph GG on nn nodes, or reject if GG is triangle free. The first algorithm uses combinatorial ideas with Grover Search and makes O~(n10/7)\tilde{O}(n^{10/7}) queries. The second algorithm uses O~(n13/10)\tilde{O}(n^{13/10}) queries, and it is based on a design concept of Ambainis~\cite{amb04} that incorporates the benefits of quantum walks into Grover search~\cite{gro96}. The first algorithm uses only O(logn)O(\log n) qubits in its quantum subroutines, whereas the second one uses O(n) qubits. The Triangle Problem was first treated in~\cite{bdhhmsw01}, where an algorithm with O(n+nm)O(n+\sqrt{nm}) query complexity was presented, where mm is the number of edges of GG.Comment: Several typos are fixed, and full proofs are included. Full version of the paper accepted to SODA'0

    Derandomization of quantum algorithm for triangle finding

    Full text link
    Derandomization is the process of taking a randomized algorithm and turning it into a deterministic algorithm, which has attracted great attention in classical computing. In quantum computing, it is challenging and intriguing to derandomize quantum algorithms, due to the inherent randomness of quantum mechanics. The significance of derandomizing quantum algorithms lies not only in theoretically proving that the success probability can essentially be 1 without sacrificing quantum speedups, but also in experimentally improving the success rate when the algorithm is implemented on a real quantum computer. In this paper, we focus on derandomizing quanmtum algorithms for the triangle sum problem (including the famous triangle finding problem as a special case), which asks to find a triangle in an edge-weighted graph with nn vertices, such that its edges sum up to a given weight.We show that when the graph is promised to contain at most one target triangle, there exists a deterministic quantum algorithm that either finds the triangle if it exists or outputs ``no triangle'' if none exists. It makes O(n9/7)O(n^{9/7}) queries to the edge weight matrix oracle, and thus has the same complexity with the state-of-art bounded-error quantum algorithm. To achieve this derandomization, we make full use several techniques:nested quantum walks with quantum data structure, deterministic quantum search with adjustable parameters, and dimensional reduction of quantum walk search on Johnson graph

    On the Power of Non-Adaptive Learning Graphs

    Full text link
    We introduce a notion of the quantum query complexity of a certificate structure. This is a formalisation of a well-known observation that many quantum query algorithms only require the knowledge of the disposition of possible certificates in the input string, not the precise values therein. Next, we derive a dual formulation of the complexity of a non-adaptive learning graph, and use it to show that non-adaptive learning graphs are tight for all certificate structures. By this, we mean that there exists a function possessing the certificate structure and such that a learning graph gives an optimal quantum query algorithm for it. For a special case of certificate structures generated by certificates of bounded size, we construct a relatively general class of functions having this property. The construction is based on orthogonal arrays, and generalizes the quantum query lower bound for the kk-sum problem derived recently in arXiv:1206.6528. Finally, we use these results to show that the learning graph for the triangle problem from arXiv:1210.1014 is almost optimal in these settings. This also gives a quantum query lower bound for the triangle-sum problem.Comment: 16 pages, 1.5 figures v2: the main result generalised for all certificate structures, a bug in the proof of Proposition 17 fixe

    Matching Triangles and Triangle Collection: Hardness based on a Weak Quantum Conjecture

    Full text link
    Classically, for many computational problems one can conclude time lower bounds conditioned on the hardness of one or more of key problems: k-SAT, 3SUM and APSP. More recently, similar results have been derived in the quantum setting conditioned on the hardness of k-SAT and 3SUM. This is done using fine-grained reductions, where the approach is to (1) select a key problem XX that, for some function TT, is conjectured to not be solvable by any O(T(n)1ϵ)O(T(n)^{1-\epsilon}) time algorithm for any constant ϵ>0\epsilon > 0 (in a fixed model of computation), and (2) reduce XX in a fine-grained way to these computational problems, thus giving (mostly) tight conditional time lower bounds for them. Interestingly, for Delta-Matching Triangles and Triangle Collection, classical hardness results have been derived conditioned on hardness of all three mentioned key problems. More precisely, it is proven that an n3ϵn^{3-\epsilon} time classical algorithm for either of these two graph problems would imply faster classical algorithms for k-SAT, 3SUM and APSP, which makes Delta-Matching Triangles and Triangle Collection worthwhile to study. In this paper, we show that an n1.5ϵn^{1.5-\epsilon} time quantum algorithm for either of these two graph problems would imply faster quantum algorithms for k-SAT, 3SUM, and APSP. We first formulate a quantum hardness conjecture for APSP and then present quantum reductions from k-SAT, 3SUM, and APSP to Delta-Matching Triangles and Triangle Collection. Additionally, based on the quantum APSP conjecture, we are also able to prove quantum lower bounds for a matrix problem and many graph problems. The matching upper bounds follow trivially for most of them, except for Delta-Matching Triangles and Triangle Collection for which we present quantum algorithms that require careful use of data structures and Ambainis' variable time search

    Quantum algorithms for subset finding

    Full text link
    Recently, Ambainis gave an O(N^(2/3))-query quantum walk algorithm for element distinctness, and more generally, an O(N^(L/(L+1)))-query algorithm for finding L equal numbers. We point out that this algorithm actually solves a much more general problem, the problem of finding a subset of size L that satisfies any given property. We review the algorithm and give a considerably simplified analysis of its query complexity. We present several applications, including two algorithms for the problem of finding an L-clique in an N-vertex graph. One of these algorithms uses O(N^(2L/(L+1))) edge queries, and the other uses \tilde{O}(N^((5L-2)/(2L+4))), which is an improvement for L <= 5. The latter algorithm generalizes a recent result of Magniez, Santha, and Szegedy, who considered the case L=3 (finding a triangle). We also pose two open problems regarding continuous time quantum walk and lower bounds.Comment: 7 pages; note added on related results in quant-ph/031013

    On the Power of Non-adaptive Learning Graphs

    Get PDF
    We introduce a notion of the quantum query complexity of a certificate structure. This is a formalization of a well-known observation that many quantum query algorithms only require the knowledge of the position of possible certificates in the input string, not the precise values therein. Next, we derive a dual formulation of the complexity of a non-adaptive learning graph and use it to show that non-adaptive learning graphs are tight for all certificate structures. By this, we mean that there exists a function possessing the certificate structure such that a learning graph gives an optimal quantum query algorithm for it. For a special case of certificate structures generated by certificates of bounded size, we construct a relatively general class of functions having this property. The construction is based on orthogonal arrays and generalizes the quantum query lower bound for the k-sum problem derived recently by Belovs and Špalek (Proceeding of 4th ACM ITCS, 323–328, 2013). Finally, we use these results to show that the learning graph for the triangle problem by Lee et al. (Proceeding of 24th ACM-SIAM SODA, 1486–1502, 2013) is almost optimal in the above settings. This also gives a quantum query lower bound for the triangle sum problem.National Science Foundation (U.S.) (Scott Aaronson’s Alan T. Waterman Award

    An Improved Approximation Algorithm for Quantum Max-Cut

    Full text link
    We give an approximation algorithm for Quantum Max-Cut which works by rounding an SDP relaxation to an entangled quantum state. The SDP is used to choose the parameters of a variational quantum circuit. The entangled state is then represented as the quantum circuit applied to a product state. It achieves an approximation ratio of 0.582 on triangle-free graphs. The previous best algorithms of Anshu, Gosset, Morenz, and Parekh, Thompson achieved approximation ratios of 0.531 and 0.533 respectively. In addition, we study the EPR Hamiltonian, which we argue is a natural intermediate problem which isolates some key quantum features of local Hamiltonian problems. For the EPR Hamiltonian, we give an approximation algorithm with approximation ratio 1/21 / \sqrt{2} on all graphs
    corecore