41,522 research outputs found

    Quantum Weighted Model Counting

    Get PDF
    In Weighted Model Counting (WMC) we assign weights to Boolean literals and we want to compute the sum of the weights of the models of a Boolean function where the weight of a model is the product of the weights of its literals. WMC was shown to be particularly effective for performing inference in graphical models, with a complexity of O(n2w)O(n2^w) where nn is the number of variables and ww is the treewidth. In this paper, we propose a quantum algorithm for performing WMC, Quantum WMC (QWMC), that modifies the quantum model counting algorithm to take into account the weights. In turn, the model counting algorithm uses the algorithms of quantum search, phase estimation and Fourier transform. In the black box model of computation, where we can only query an oracle for evaluating the Boolean function given an assignment, QWMC solves the problem approximately with a complexity of Θ(2n2)\Theta(2^{\frac{n}{2}}) oracle calls while classically the best complexity is Θ(2n)\Theta(2^n), thus achieving a quadratic speedup

    On Lorentz-Violating Supersymmetric Quantum Field Theories

    Full text link
    We study the possibility of constructing Lorentz-violating supersymmetric quantum field theories under the assumption that these theories have to be described by lagrangians which are renormalizable by weighted power counting. Our investigation starts from the observation that at high energies Lorentz-violation and the usual supersymmetry algebra are algebraically compatible. Demanding linearity of the supercharges we see that the requirement of renormalizability drastically restricts the set of possible Lorentz-violating supersymmetric theories. In particular, in the case of supersymmetric gauge theories the weighted power counting has to coincide with the usual one and the only Lorentz-violating operators are introduced by some weighted constant c that explicitly appears in the supersymmetry algebra. This parameter does not renormalize and has to be very close to the speed of light at low energies in order to satisfy the strict experimental bounds on Lorentz violation. The only possible models with non trivial Lorentz-violating operators involve neutral chiral superfields and do not have a gauge invariant extension. We conclude that, under the assumption that high-energy physics can be described by a renormalizable Lorentz-violating extensions of the Standard Model, the Lorentz fine tuning problem does not seem solvable by the requirement of supersymmetry.Comment: 22 pages, 2 figure

    Calabi-Yau fourfolds for M- and F-Theory compactifications

    Full text link
    We investigate topological properties of Calabi-Yau fourfolds and consider a wide class of explicit constructions in weighted projective spaces and, more generally, toric varieties. Divisors which lead to a non-perturbative superpotential in the effective theory have a very simple description in the toric construction. Relevant properties of them follow just by counting lattice points and can be also used to construct examples with negative Euler number. We study nets of transitions between cases with generically smooth elliptic fibres and cases with ADE gauge symmetries in the N=1 theory due to degenerations of the fibre over codimension one loci in the base. Finally we investigate the quantum cohomology ring of this fourfolds using Frobenius algebras.Comment: 61 pages harvmac, one figure blow.eps, model 16 in tab 6.1 corrected and other minor corrections, references adde

    Weighted power counting and chiral dimensional regularization

    Full text link
    We define a modified dimensional-regularization technique that overcomes several difficulties of the ordinary technique, and is specially designed to work efficiently in chiral and parity violating quantum field theories, in arbitrary dimensions greater than 2. When the dimension of spacetime is continued to complex values, spinors, vectors and tensors keep the components they have in the physical dimension, therefore the γ\gamma matrices are the standard ones. Propagators are regularized with the help of evanescent higher-derivative kinetic terms, which are of the Majorana type in the case of chiral fermions. If the new terms are organized in a clever way, weighted power counting provides an efficient control on the renormalization of the theory, and allows us to show that the resulting chiral dimensional regularization is consistent to all orders. The new technique considerably simplifies the proofs of properties that hold to all orders, and makes them suitable to be generalized to wider classes of models. Typical examples are the renormalizability of chiral gauge theories and the Adler-Bardeen theorem. The difficulty of explicit computations, on the other hand, may increase.Comment: 41 pages; v2: minor changes, PRD versio

    Projectable Horava-Lifshitz gravity in a nutshell

    Full text link
    Approximately one year ago Horava proposed a power-counting renormalizable theory of gravity which abandons local Lorentz invariance. The proposal has been received with growing interest and resulted in various different versions of Horava-Lifshitz gravity theories, involving a colourful potpourri of new terminology. In this proceedings contribution we first motivate and briefly overview the various different approaches, clarifying their differences and similarities. We then focus on a model referred to as projectable Horava-Lifshitz gravity and summarize the key results regarding its viability.Comment: 8 pages, no figures, to appear in the proceedings of First Mediterranean Conference on Classical and Quantum Gravity Conference (MCCQG), Kolymbari (Crete, Greece), September 14-18, 200

    Long-range spin-pairing order and spin defects in quantum spin-1/2 ladders

    Full text link
    For w-legged antiferromagnetic spin-1/2 Heisenberg ladders, a long-range spin-pairing order can be identified which enables the separation of the space spanned by finite-range (covalent) valence-bond configurations into w+1 subspaces. Since every subspace has an equivalent counter subspace connected by translational symmetry, twofold degeneracy, breaking traslational symmetry is found except for the subspace where the ground state of w=even belongs to. In terms of energy ordering, (non)degeneracy and the discontinuities introduced in the long-range spin-pairing order by topological spin defects, the differences between even and odd ladders are explained in a general and systematic way.Comment: 16 pages, 7 figures, 2 tables. To be publish in The European Physical J.
    • …
    corecore