1,321 research outputs found

    Quantum walks on two-dimensional grids with multiple marked locations

    Full text link
    The running time of a quantum walk search algorithm depends on both the structure of the search space (graph) and the configuration of marked locations. While the first dependence have been studied in a number of papers, the second dependence remains mostly unstudied. We study search by quantum walks on two-dimensional grid using the algorithm of Ambainis, Kempe and Rivosh [AKR05]. The original paper analyses one and two marked location cases only. We move beyond two marked locations and study the behaviour of the algorithm for an arbitrary configuration of marked locations. In this paper we prove two results showing the importance of how the marked locations are arranged. First, we present two placements of kk marked locations for which the number of steps of the algorithm differs by Ω(k)\Omega(\sqrt{k}) factor. Second, we present two configurations of kk and k\sqrt{k} marked locations having the same number of steps and probability to find a marked location

    Efficient Quantum Walk on the Grid with Multiple Marked Elements

    Get PDF
    We give a quantum algorithm for finding a marked element on the grid when there are multiple marked elements. Our algorithm uses quadratically fewer steps than a random walk on the grid, ignoring logarithmic factors. This is the first known quantum walk that finds a marked element in a number of steps less than the square-root of the extended hitting time. We also give a new tighter upper bound on the extended hitting time of a marked subset, expressed in terms of the hitting times of its members

    On Applying the Lackadaisical Quantum Walk Algorithm to Search for Multiple Solutions on Grids

    Full text link
    Quantum computing holds the promise of improving the information processing power to levels unreachable by classical computation. Quantum walks are heading the development of quantum algorithms for searching information on graphs more efficiently than their classical counterparts. A quantum-walk-based algorithm that is standing out in the literature is the lackadaisical quantum walk. The lackadaisical quantum walk is an algorithm developed to search two-dimensional grids whose vertices have a self-loop of weight ll. In this paper, we address several issues related to the application of the lackadaisical quantum walk to successfully search for multiple solutions on grids. Firstly, we show that only one of the two stopping conditions found in the literature is suitable for simulations. We also demonstrate that the final success probability depends on the space density of solutions and the relative distance between solutions. Furthermore, this work generalizes the lackadaisical quantum walk to search for multiple solutions on grids of arbitrary dimensions. In addition, we propose an optimal adjustment of the self-loop weight ll for such scenarios of arbitrary dimensions. It turns out the other fits of ll found in the literature are particular cases. Finally, we observe a two-to-one relation between the steps of the lackadaisical quantum walk and the ones of Grover's algorithm, which requires modifications in the stopping condition. In conclusion, this work deals with practical issues one should consider when applying the lackadaisical quantum walk, besides expanding the technique to a wider range of search problems.Comment: Extended version of the conference paper available at https://doi.org/10.1007/978-3-030-61377-8_9 . 21 pages, 6 figure
    corecore