851 research outputs found

    Quantum Property Testing

    Get PDF
    A language L has a property tester if there exists a probabilistic algorithm that given an input x only asks a small number of bits of x and distinguishes the cases as to whether x is in L and x has large Hamming distance from all y in L. We define a similar notion of quantum property testing and show that there exist languages with quantum property testers but no good classical testers. We also show there exist languages which require a large number of queries even for quantumly testing

    New Results on Quantum Property Testing

    Get PDF
    We present several new examples of speed-ups obtainable by quantum algorithms in the context of property testing. First, motivated by sampling algorithms, we consider probability distributions given in the form of an oracle f:[n]→[m]f:[n]\to[m]. Here the probability \PP_f(j) of an outcome j∈[m]j\in[m] is the fraction of its domain that ff maps to jj. We give quantum algorithms for testing whether two such distributions are identical or Ï”\epsilon-far in L1L_1-norm. Recently, Bravyi, Hassidim, and Harrow \cite{BHH10} showed that if \PP_f and \PP_g are both unknown (i.e., given by oracles ff and gg), then this testing can be done in roughly m\sqrt{m} quantum queries to the functions. We consider the case where the second distribution is known, and show that testing can be done with roughly m1/3m^{1/3} quantum queries, which we prove to be essentially optimal. In contrast, it is known that classical testing algorithms need about m2/3m^{2/3} queries in the unknown-unknown case and about m\sqrt{m} queries in the known-unknown case. Based on this result, we also reduce the query complexity of graph isomorphism testers with quantum oracle access. While those examples provide polynomial quantum speed-ups, our third example gives a much larger improvement (constant quantum queries vs polynomial classical queries) for the problem of testing periodicity, based on Shor's algorithm and a modification of a classical lower bound by Lachish and Newman \cite{lachish&newman:periodicity}. This provides an alternative to a recent constant-vs-polynomial speed-up due to Aaronson \cite{aaronson:bqpph}.Comment: 2nd version: updated some references, in particular to Aaronson's Fourier checking proble

    A Survey of Quantum Property Testing

    Get PDF
    The area of property testing tries to design algorithms that can efficiently handle very large amounts of data: given a large object that either has a certain property or is somehow “far” from having that property, a tester should efficiently distinguish between these two cases. In this survey we describe recent results obtained for quantum property testing. This area naturally falls into three parts. First, we may consider quantum testers for properties of classical objects. We survey the main examples known where quantum testers can be much (sometimes exponentially) more efficient than classical testers. Second, we may consider classical testers of quantum objects. This is the situation that arises for instance when one is trying to determine if quantum states or operations do what they are supposed to do, based only on classical input-output behavior. Finally, we may also consider quantum testers for properties of quantum objects, such as states or operations. We survey known bounds on testing various natural properties, such as whether two states are equal, whether a state is separable, whether two operations commute, etc. We also highlight connections to other areas of quantum information theory and mention a number of open questions. Contents

    On solving systems of random linear disequations

    Get PDF
    An important subcase of the hidden subgroup problem is equivalent to the shift problem over abelian groups. An efficient solution to the latter problem would serve as a building block of quantum hidden subgroup algorithms over solvable groups. The main idea of a promising approach to the shift problem is reduction to solving systems of certain random disequations in finite abelian groups. The random disequations are actually generalizations of linear functions distributed nearly uniformly over those not containing a specific group element in the kernel. In this paper we give an algorithm which finds the solutions of a system of N random linear disequations in an abelian p-group A in time polynomial in N, where N=(log|A|)^{O(q)}, and q is the exponent of A.Comment: 13 page

    Quantum Algorithms for Some Hidden Shift Problems

    Get PDF
    Almost all of the most successful quantum algorithms discovered to date exploit the ability of the Fourier transform to recover subgroup structures of functions, especially periodicity. The fact that Fourier transforms can also be used to capture shift structure has received far less attention in the context of quantum computation. In this paper, we present three examples of "unknown shift" problems that can be solved efficiently on a quantum computer using the quantum Fourier transform. For one of these problems, the shifted Legendre symbol problem, we give evidence that the problem is hard to solve classically, by showing a reduction from breaking algebraically homomorphic cryptosystems. We also define the hidden coset problem, which generalizes the hidden shift problem and the hidden subgroup problem. This framework provides a unified way of viewing the ability of the Fourier transform to capture subgroup and shift structure

    Quantum Algorithms for Learning and Testing Juntas

    Full text link
    In this article we develop quantum algorithms for learning and testing juntas, i.e. Boolean functions which depend only on an unknown set of k out of n input variables. Our aim is to develop efficient algorithms: - whose sample complexity has no dependence on n, the dimension of the domain the Boolean functions are defined over; - with no access to any classical or quantum membership ("black-box") queries. Instead, our algorithms use only classical examples generated uniformly at random and fixed quantum superpositions of such classical examples; - which require only a few quantum examples but possibly many classical random examples (which are considered quite "cheap" relative to quantum examples). Our quantum algorithms are based on a subroutine FS which enables sampling according to the Fourier spectrum of f; the FS subroutine was used in earlier work of Bshouty and Jackson on quantum learning. Our results are as follows: - We give an algorithm for testing k-juntas to accuracy Ï”\epsilon that uses O(k/Ï”)O(k/\epsilon) quantum examples. This improves on the number of examples used by the best known classical algorithm. - We establish the following lower bound: any FS-based k-junta testing algorithm requires Ω(k)\Omega(\sqrt{k}) queries. - We give an algorithm for learning kk-juntas to accuracy Ï”\epsilon that uses O(ϔ−1klog⁥k)O(\epsilon^{-1} k\log k) quantum examples and O(2klog⁥(1/Ï”))O(2^k \log(1/\epsilon)) random examples. We show that this learning algorithms is close to optimal by giving a related lower bound.Comment: 15 pages, 1 figure. Uses synttree package. To appear in Quantum Information Processin
    • 

    corecore