3,174 research outputs found

    A New Fundamental Evidence of Non-Classical Structure in the Combination of Natural Concepts

    Full text link
    We recently performed cognitive experiments on conjunctions and negations of two concepts with the aim of investigating the combination problem of concepts. Our experiments confirmed the deviations (conceptual vagueness, underextension, overextension, etc.) from the rules of classical (fuzzy) logic and probability theory observed by several scholars in concept theory, while our data were successfully modeled in a quantum-theoretic framework developed by ourselves. In this paper, we isolate a new, very stable and systematic pattern of violation of classicality that occurs in concept combinations. In addition, the strength and regularity of this non-classical effect leads us to believe that it occurs at a more fundamental level than the deviations observed up to now. It is our opinion that we have identified a deep non-classical mechanism determining not only how concepts are combined but, rather, how they are formed. We show that this effect can be faithfully modeled in a two-sector Fock space structure, and that it can be exactly explained by assuming that human thought is the supersposition of two processes, a 'logical reasoning', guided by 'logic', and a 'conceptual reasoning' guided by 'emergence', and that the latter generally prevails over the former. All these findings provide a new fundamental support to our quantum-theoretic approach to human cognition.Comment: 14 pages. arXiv admin note: substantial text overlap with arXiv:1503.0426

    Quantum Structure in Cognition, Origins, Developments, Successes and Expectations

    Full text link
    We provide an overview of the results we have attained in the last decade on the identification of quantum structures in cognition and, more specifically, in the formalization and representation of natural concepts. We firstly discuss the quantum foundational reasons that led us to investigate the mechanisms of formation and combination of concepts in human reasoning, starting from the empirically observed deviations from classical logical and probabilistic structures. We then develop our quantum-theoretic perspective in Fock space which allows successful modeling of various sets of cognitive experiments collected by different scientists, including ourselves. In addition, we formulate a unified explanatory hypothesis for the presence of quantum structures in cognitive processes, and discuss our recent discovery of further quantum aspects in concept combinations, namely, 'entanglement' and 'indistinguishability'. We finally illustrate perspectives for future research.Comment: 25 pages. arXiv admin note: text overlap with arXiv:1412.870

    Concepts and Their Dynamics: A Quantum-Theoretic Modeling of Human Thought

    Full text link
    We analyze different aspects of our quantum modeling approach of human concepts, and more specifically focus on the quantum effects of contextuality, interference, entanglement and emergence, illustrating how each of them makes its appearance in specific situations of the dynamics of human concepts and their combinations. We point out the relation of our approach, which is based on an ontology of a concept as an entity in a state changing under influence of a context, with the main traditional concept theories, i.e. prototype theory, exemplar theory and theory theory. We ponder about the question why quantum theory performs so well in its modeling of human concepts, and shed light on this question by analyzing the role of complex amplitudes, showing how they allow to describe interference in the statistics of measurement outcomes, while in the traditional theories statistics of outcomes originates in classical probability weights, without the possibility of interference. The relevance of complex numbers, the appearance of entanglement, and the role of Fock space in explaining contextual emergence, all as unique features of the quantum modeling, are explicitly revealed in this paper by analyzing human concepts and their dynamics.Comment: 31 pages, 5 figure

    Eigenlogic: a Quantum View for Multiple-Valued and Fuzzy Systems

    Full text link
    We propose a matrix model for two- and many-valued logic using families of observables in Hilbert space, the eigenvalues give the truth values of logical propositions where the atomic input proposition cases are represented by the respective eigenvectors. For binary logic using the truth values {0,1} logical observables are pairwise commuting projectors. For the truth values {+1,-1} the operator system is formally equivalent to that of a composite spin 1/2 system, the logical observables being isometries belonging to the Pauli group. Also in this approach fuzzy logic arises naturally when considering non-eigenvectors. The fuzzy membership function is obtained by the quantum mean value of the logical projector observable and turns out to be a probability measure in agreement with recent quantum cognition models. The analogy of many-valued logic with quantum angular momentum is then established. Logical observables for three-value logic are formulated as functions of the Lz observable of the orbital angular momentum l=1. The representative 3-valued 2-argument logical observables for the Min and Max connectives are explicitly obtained.Comment: 11 pages, 2 table

    A model of the emergence and evolution of integrated worldviews

    Get PDF
    It \ud is proposed that the ability of humans to flourish in diverse \ud environments and evolve complex cultures reflects the following two \ud underlying cognitive transitions. The transition from the \ud coarse-grained associative memory of Homo habilis to the \ud fine-grained memory of Homo erectus enabled limited \ud representational redescription of perceptually similar episodes, \ud abstraction, and analytic thought, the last of which is modeled as \ud the formation of states and of lattices of properties and contexts \ud for concepts. The transition to the modern mind of Homo \ud sapiens is proposed to have resulted from onset of the capacity to \ud spontaneously and temporarily shift to an associative mode of thought \ud conducive to interaction amongst seemingly disparate concepts, \ud modeled as the forging of conjunctions resulting in states of \ud entanglement. The fruits of associative thought became ingredients \ud for analytic thought, and vice versa. The ratio of \ud associative pathways to concepts surpassed a percolation threshold \ud resulting in the emergence of a self-modifying, integrated internal \ud model of the world, or worldview

    Quantum Theory and Conceptuality: Matter, Stories, Semantics and Space-Time

    Get PDF
    We elaborate the new interpretation of quantum theory that we recently proposed, according to which quantum particles are considered conceptual entities mediating between pieces of ordinary matter which are considered to act as memory structures for them. Our aim is to identify what is the equivalent for the human cognitive realm of what physical space-time is for the realm of quantum particles and ordinary matter. For this purpose, we identify the notion of 'story' as the equivalent within the human cognitive realm of what ordinary matter is in the physical quantum realm, and analyze the role played by the logical connectives of disjunction and conjunction with respect to the notion of locality. Similarly to what we have done in earlier investigations on this new quantum interpretation, we use the specific cognitive environment of the World-Wide Web to elucidate the comparisons we make between the human cognitive realm and the physical quantum realm.Comment: 14 page

    Contextualizing concepts using a mathematical generalization of the quantum formalism

    Get PDF
    We outline the rationale and preliminary results of using the State Context Property (SCOP) formalism, originally developed as a generalization of quantum mechanics, to describe the contextual manner in which concepts are evoked, used, and combined to generate meaning. The quantum formalism was developed to cope with problems arising in the description of (1) the measurement process, and (2) the generation of new states with new properties when particles become entangled. Similar problems arising with concepts motivated the formal treatment introduced here. Concepts are viewed not as fixed representations, but entities existing in states of potentiality that require interaction with a context---a stimulus or another concept---to `collapse' to observable form as an exemplar, prototype, or other (possibly imaginary) instance. The stimulus situation plays the role of the measurement in physics, acting as context that induces a change of the cognitive state from superposition state to collapsed state. The collapsed state is more likely to consist of a conjunction of concepts for associative than analytic thought because more stimulus or concept properties take part in the collapse. We provide two contextual measures of conceptual distance---one using collapse probabilities and the other weighted properties---and show how they can be applied to conjunctions using the pet fish problem
    • …
    corecore