28,811 research outputs found

    Programming Telepathy: Implementing Quantum Non-Locality Games

    Full text link
    Quantum pseudo-telepathy is an intriguing phenomenon which results from the application of quantum information theory to communication complexity. To demonstrate this phenomenon researchers in the field of quantum communication complexity devised a number of quantum non-locality games. The setting of these games is as follows: the players are separated so that no communication between them is possible and are given a certain computational task. When the players have access to a quantum resource called entanglement, they can accomplish the task: something that is impossible in a classical setting. To an observer who is unfamiliar with the laws of quantum mechanics it seems that the players employ some sort of telepathy; that is, they somehow exchange information without sharing a communication channel. This paper provides a formal framework for specifying, implementing, and analysing quantum non-locality games

    Programming with Quantum Communication

    Get PDF
    This work develops a formal framework for specifying, implementing, and analysing quantum communication protocols. We provide tools for developing simple proofs and analysing programs which involve communication, both via quantum channels and exhibiting the LOCC (local operations, classical communication) paradigm

    Computation in Finitary Stochastic and Quantum Processes

    Full text link
    We introduce stochastic and quantum finite-state transducers as computation-theoretic models of classical stochastic and quantum finitary processes. Formal process languages, representing the distribution over a process's behaviors, are recognized and generated by suitable specializations. We characterize and compare deterministic and nondeterministic versions, summarizing their relative computational power in a hierarchy of finitary process languages. Quantum finite-state transducers and generators are a first step toward a computation-theoretic analysis of individual, repeatedly measured quantum dynamical systems. They are explored via several physical systems, including an iterated beam splitter, an atom in a magnetic field, and atoms in an ion trap--a special case of which implements the Deutsch quantum algorithm. We show that these systems' behaviors, and so their information processing capacity, depends sensitively on the measurement protocol.Comment: 25 pages, 16 figures, 1 table; http://cse.ucdavis.edu/~cmg; numerous corrections and update

    An Application of Quantum Finite Automata to Interactive Proof Systems

    Get PDF
    Quantum finite automata have been studied intensively since their introduction in late 1990s as a natural model of a quantum computer with finite-dimensional quantum memory space. This paper seeks their direct application to interactive proof systems in which a mighty quantum prover communicates with a quantum-automaton verifier through a common communication cell. Our quantum interactive proof systems are juxtaposed to Dwork-Stockmeyer's classical interactive proof systems whose verifiers are two-way probabilistic automata. We demonstrate strengths and weaknesses of our systems and further study how various restrictions on the behaviors of quantum-automaton verifiers affect the power of quantum interactive proof systems.Comment: This is an extended version of the conference paper in the Proceedings of the 9th International Conference on Implementation and Application of Automata, Lecture Notes in Computer Science, Springer-Verlag, Kingston, Canada, July 22-24, 200
    • …
    corecore