63 research outputs found

    Quantum Sphere-Packing Bounds with Polynomial Prefactors

    Full text link
    © 1963-2012 IEEE. We study lower bounds on the optimal error probability in classical coding over classical-quantum channels at rates below the capacity, commonly termed quantum sphere-packing bounds. Winter and Dalai have derived such bounds for classical-quantum channels; however, the exponents in their bounds only coincide when the channel is classical. In this paper, we show that these two exponents admit a variational representation and are related by the Golden-Thompson inequality, reaffirming that Dalai's expression is stronger in general classical-quantum channels. Second, we establish a finite blocklength sphere-packing bound for classical-quantum channels, which significantly improves Dalai's prefactor from the order of subexponential to polynomial. Furthermore, the gap between the obtained error exponent for constant composition codes and the best known classical random coding exponent vanishes in the order of o(log⁑n/n)o(\log n / n) , indicating our sphere-packing bound is almost exact in the high rate regime. Finally, for a special class of symmetric classical-quantum channels, we can completely characterize its optimal error probability without the constant composition code assumption. The main technical contributions are two converse Hoeffding bounds for quantum hypothesis testing and the saddle-point properties of error exponent functions

    A Simple Derivation of the Refined Sphere Packing Bound Under Certain Symmetry Hypotheses

    Full text link
    A judicious application of the Berry-Esseen theorem via suitable Augustin information measures is demonstrated to be sufficient for deriving the sphere packing bound with a prefactor that is Ξ©(nβˆ’0.5(1βˆ’Espβ€²(R)))\mathit{\Omega}\left(n^{-0.5(1-E_{sp}'(R))}\right) for all codes on certain families of channels -- including the Gaussian channels and the non-stationary Renyi symmetric channels -- and for the constant composition codes on stationary memoryless channels. The resulting non-asymptotic bounds have definite approximation error terms. As a preliminary result that might be of interest on its own, the trade-off between type I and type II error probabilities in the hypothesis testing problem with (possibly non-stationary) independent samples is determined up to some multiplicative constants, assuming that the probabilities of both types of error are decaying exponentially with the number of samples, using the Berry-Esseen theorem.Comment: 20 page

    Achievable error exponents of data compression with quantum side information and communication over symmetric classical-quantum channels

    Full text link
    A fundamental quantity of interest in Shannon theory, classical or quantum, is the optimal error exponent of a given channel W and rate R: the constant E(W,R) which governs the exponential decay of decoding error when using ever larger codes of fixed rate R to communicate over ever more (memoryless) instances of a given channel W. Here I show that a bound by Hayashi [CMP 333, 335 (2015)] for an analogous quantity in privacy amplification implies a lower bound on the error exponent of communication over symmetric classical-quantum channels. The resulting bound matches Dalai's [IEEE TIT 59, 8027 (2013)] sphere-packing upper bound for rates above a critical value, and reproduces the well-known classical result for symmetric channels. The argument proceeds by first relating the error exponent of privacy amplification to that of compression of classical information with quantum side information, which gives a lower bound that matches the sphere-packing upper bound of Cheng et al. [IEEE TIT 67, 902 (2021)]. In turn, the polynomial prefactors to the sphere-packing bound found by Cheng et al. may be translated to the privacy amplification problem, sharpening a recent result by Li, Yao, and Hayashi [arXiv:2111.01075 [quant-ph]], at least for linear randomness extractors.Comment: Comments very welcome

    The Sphere Packing Bound For Memoryless Channels

    Full text link
    Sphere packing bounds (SPBs) ---with prefactors that are polynomial in the block length--- are derived for codes on two families of memoryless channels using Augustin's method: (possibly non-stationary) memoryless channels with (possibly multiple) additive cost constraints and stationary memoryless channels with convex constraints on the composition (i.e. empirical distribution, type) of the input codewords. A variant of Gallager's bound is derived in order to show that these sphere packing bounds are tight in terms of the exponential decay rate of the error probability with the block length under mild hypotheses.Comment: 29 page

    The Third-Order Term in the Normal Approximation for the AWGN Channel

    Full text link
    This paper shows that, under the average error probability formalism, the third-order term in the normal approximation for the additive white Gaussian noise channel with a maximal or equal power constraint is at least 12log⁑n+O(1)\frac{1}{2} \log n + O(1). This matches the upper bound derived by Polyanskiy-Poor-Verd\'{u} (2010).Comment: 13 pages, 1 figur

    Refined Strong Converse for the Constant Composition Codes

    Full text link
    A strong converse bound for constant composition codes of the form Pe(n)β‰₯1βˆ’Anβˆ’0.5(1βˆ’Escβ€²(R,W,p))eβˆ’nEsc(R,W,p)P_{e}^{(n)} \geq 1- A n^{-0.5(1-E_{sc}'(R,W,p))} e^{-n E_{sc}(R,W,p)} is established using the Berry-Esseen theorem through the concepts of Augustin information and Augustin mean, where AA is a constant determined by the channel WW, the composition pp, and the rate RR, i.e., AA does not depend on the block length nn.Comment: 7 page

    Density of Spherically-Embedded Stiefel and Grassmann Codes

    Full text link
    The density of a code is the fraction of the coding space covered by packing balls centered around the codewords. This paper investigates the density of codes in the complex Stiefel and Grassmann manifolds equipped with the chordal distance. The choice of distance enables the treatment of the manifolds as subspaces of Euclidean hyperspheres. In this geometry, the densest packings are not necessarily equivalent to maximum-minimum-distance codes. Computing a code's density follows from computing: i) the normalized volume of a metric ball and ii) the kissing radius, the radius of the largest balls one can pack around the codewords without overlapping. First, the normalized volume of a metric ball is evaluated by asymptotic approximations. The volume of a small ball can be well-approximated by the volume of a locally-equivalent tangential ball. In order to properly normalize this approximation, the precise volumes of the manifolds induced by their spherical embedding are computed. For larger balls, a hyperspherical cap approximation is used, which is justified by a volume comparison theorem showing that the normalized volume of a ball in the Stiefel or Grassmann manifold is asymptotically equal to the normalized volume of a ball in its embedding sphere as the dimension grows to infinity. Then, bounds on the kissing radius are derived alongside corresponding bounds on the density. Unlike spherical codes or codes in flat spaces, the kissing radius of Grassmann or Stiefel codes cannot be exactly determined from its minimum distance. It is nonetheless possible to derive bounds on density as functions of the minimum distance. Stiefel and Grassmann codes have larger density than their image spherical codes when dimensions tend to infinity. Finally, the bounds on density lead to refinements of the standard Hamming bounds for Stiefel and Grassmann codes.Comment: Two-column version (24 pages, 6 figures, 4 tables). To appear in IEEE Transactions on Information Theor

    The Sphere Packing Bound via Augustin's Method

    Full text link
    A sphere packing bound (SPB) with a prefactor that is polynomial in the block length nn is established for codes on a length nn product channel W[1,n]W_{[1,n]} assuming that the maximum order 1/21/2 Renyi capacity among the component channels, i.e. max⁑t∈[1,n]C1/2,Wt\max_{t\in[1,n]} C_{1/2,W_{t}}, is O(ln⁑n)\mathit{O}(\ln n). The reliability function of the discrete stationary product channels with feedback is bounded from above by the sphere packing exponent. Both results are proved by first establishing a non-asymptotic SPB. The latter result continues to hold under a milder stationarity hypothesis.Comment: 30 pages. An error in the statement of Lemma 2 is corrected. The change is inconsequential for the rest of the pape

    Moderate deviation analysis for classical-quantum channels and quantum hypothesis testing

    Full text link
    Β© 1963-2012 IEEE. In this paper, we study the tradeoffs between the error probabilities of classical-quantum channels and the blocklength n when the transmission rates approach the channel capacity at a rate lower than 1 {n} , a research topic known as moderate deviation analysis. We show that the optimal error probability vanishes under this rate convergence. Our main technical contributions are a tight quantum sphere-packing bound, obtained via Chaganty and Sethuraman's concentration inequality in strong large deviation theory, and asymptotic expansions of error-exponent functions. Moderate deviation analysis for quantum hypothesis testing is also established. The converse directly follows from our channel coding result, while the achievability relies on a martingale inequality
    • …
    corecore