11,026 research outputs found

    Finding a marked node on any graph by continuous-time quantum walk

    Full text link
    Spatial search by discrete-time quantum walk can find a marked node on any ergodic, reversible Markov chain PP quadratically faster than its classical counterpart, i.e.\ in a time that is in the square root of the hitting time of PP. However, in the framework of continuous-time quantum walks, it was previously unknown whether such general speed-up is possible. In fact, in this framework, the widely used quantum algorithm by Childs and Goldstone fails to achieve such a speedup. Furthermore, it is not clear how to apply this algorithm for searching any Markov chain PP. In this article, we aim to reconcile the apparent differences between the running times of spatial search algorithms in these two frameworks. We first present a modified version of the Childs and Goldstone algorithm which can search for a marked element for any ergodic, reversible PP by performing a quantum walk on its edges. Although this approach improves the algorithmic running time for several instances, it cannot provide a generic quadratic speedup for any PP. Secondly, using the framework of interpolated Markov chains, we provide a new spatial search algorithm by continuous-time quantum walk which can find a marked node on any PP in the square root of the classical hitting time. In the scenario where multiple nodes are marked, the algorithmic running time scales as the square root of a quantity known as the extended hitting time. Our results establish a novel connection between discrete-time and continuous-time quantum walks and can be used to develop a number of Markov chain-based quantum algorithms.Comment: This version deals only with new algorithms for spatial search by continuous-time quantum walk (CTQW) on ergodic, reversible Markov chains. Please see arXiv:2004.12686 for results on the necessary and sufficient conditions for the optimality of the Childs and Goldstone algorithm for spatial search by CTQ

    Speed-up via Quantum Sampling

    Get PDF
    The Markov Chain Monte Carlo method is at the heart of efficient approximation schemes for a wide range of problems in combinatorial enumeration and statistical physics. It is therefore very natural and important to determine whether quantum computers can speed-up classical mixing processes based on Markov chains. To this end, we present a new quantum algorithm, making it possible to prepare a quantum sample, i.e., a coherent version of the stationary distribution of a reversible Markov chain. Our algorithm has a significantly better running time than that of a previous algorithm based on adiabatic state generation. We also show that our methods provide a speed-up over a recently proposed method for obtaining ground states of (classical) Hamiltonians.Comment: 8 pages, fixed some minor typo

    Quantum speedup for active learning agents

    Get PDF
    Can quantum mechanics help us in building intelligent robots and agents? One of the defining characteristics of intelligent behavior is the capacity to learn from experience. However, a major bottleneck for agents to learn in any real-life situation is the size and complexity of the corresponding task environment. Owing to, e.g., a large space of possible strategies, learning is typically slow. Even for a moderate task environment, it may simply take too long to rationally respond to a given situation. If the environment is impatient, allowing only a certain time for a response, an agent may then be unable to cope with the situation and to learn at all. Here we show that quantum physics can help and provide a significant speed-up for active learning as a genuine problem of artificial intelligence. We introduce a large class of quantum learning agents for which we show a quadratic boost in their active learning efficiency over their classical analogues. This result will be particularly relevant for applications involving complex task environments.Comment: Minor updates, 14 pages, 3 figure

    Search via Quantum Walk

    Full text link
    We propose a new method for designing quantum search algorithms for finding a "marked" element in the state space of a classical Markov chain. The algorithm is based on a quantum walk \'a la Szegedy (2004) that is defined in terms of the Markov chain. The main new idea is to apply quantum phase estimation to the quantum walk in order to implement an approximate reflection operator. This operator is then used in an amplitude amplification scheme. As a result we considerably expand the scope of the previous approaches of Ambainis (2004) and Szegedy (2004). Our algorithm combines the benefits of these approaches in terms of being able to find marked elements, incurring the smaller cost of the two, and being applicable to a larger class of Markov chains. In addition, it is conceptually simple and avoids some technical difficulties in the previous analyses of several algorithms based on quantum walk.Comment: 21 pages. Various modifications and improvements, especially in Section

    Hitting Time of Quantum Walks with Perturbation

    Full text link
    The hitting time is the required minimum time for a Markov chain-based walk (classical or quantum) to reach a target state in the state space. We investigate the effect of the perturbation on the hitting time of a quantum walk. We obtain an upper bound for the perturbed quantum walk hitting time by applying Szegedy's work and the perturbation bounds with Weyl's perturbation theorem on classical matrix. Based on the definition of quantum hitting time given in MNRS algorithm, we further compute the delayed perturbed hitting time (DPHT) and delayed perturbed quantum hitting time (DPQHT). We show that the upper bound for DPQHT is actually greater than the difference between the square root of the upper bound for a perturbed random walk and the square root of the lower bound for a random walk.Comment: 9 page

    Efficient Circuits for Quantum Walks

    Full text link
    We present an efficient general method for realizing a quantum walk operator corresponding to an arbitrary sparse classical random walk. Our approach is based on Grover and Rudolph's method for preparing coherent versions of efficiently integrable probability distributions. This method is intended for use in quantum walk algorithms with polynomial speedups, whose complexity is usually measured in terms of how many times we have to apply a step of a quantum walk, compared to the number of necessary classical Markov chain steps. We consider a finer notion of complexity including the number of elementary gates it takes to implement each step of the quantum walk with some desired accuracy. The difference in complexity for various implementation approaches is that our method scales linearly in the sparsity parameter and poly-logarithmically with the inverse of the desired precision. The best previously known general methods either scale quadratically in the sparsity parameter, or polynomially in the inverse precision. Our approach is especially relevant for implementing quantum walks corresponding to classical random walks like those used in the classical algorithms for approximating permanents and sampling from binary contingency tables. In those algorithms, the sparsity parameter grows with the problem size, while maintaining high precision is required.Comment: Modified abstract, clarified conclusion, added application section in appendix and updated reference

    On the adiabatic condition and the quantum hitting time of Markov chains

    Full text link
    We present an adiabatic quantum algorithm for the abstract problem of searching marked vertices in a graph, or spatial search. Given a random walk (or Markov chain) PP on a graph with a set of unknown marked vertices, one can define a related absorbing walk PP' where outgoing transitions from marked vertices are replaced by self-loops. We build a Hamiltonian H(s)H(s) from the interpolated Markov chain P(s)=(1s)P+sPP(s)=(1-s)P+sP' and use it in an adiabatic quantum algorithm to drive an initial superposition over all vertices to a superposition over marked vertices. The adiabatic condition implies that for any reversible Markov chain and any set of marked vertices, the running time of the adiabatic algorithm is given by the square root of the classical hitting time. This algorithm therefore demonstrates a novel connection between the adiabatic condition and the classical notion of hitting time of a random walk. It also significantly extends the scope of previous quantum algorithms for this problem, which could only obtain a full quadratic speed-up for state-transitive reversible Markov chains with a unique marked vertex.Comment: 22 page

    Faster quantum mixing for slowly evolving sequences of Markov chains

    Get PDF
    Markov chain methods are remarkably successful in computational physics, machine learning, and combinatorial optimization. The cost of such methods often reduces to the mixing time, i.e., the time required to reach the steady state of the Markov chain, which scales as δ1\delta^{-1}, the inverse of the spectral gap. It has long been conjectured that quantum computers offer nearly generic quadratic improvements for mixing problems. However, except in special cases, quantum algorithms achieve a run-time of O(δ1N)\mathcal{O}(\sqrt{\delta^{-1}} \sqrt{N}), which introduces a costly dependence on the Markov chain size N,N, not present in the classical case. Here, we re-address the problem of mixing of Markov chains when these form a slowly evolving sequence. This setting is akin to the simulated annealing setting and is commonly encountered in physics, material sciences and machine learning. We provide a quantum memory-efficient algorithm with a run-time of O(δ1N4)\mathcal{O}(\sqrt{\delta^{-1}} \sqrt[4]{N}), neglecting logarithmic terms, which is an important improvement for large state spaces. Moreover, our algorithms output quantum encodings of distributions, which has advantages over classical outputs. Finally, we discuss the run-time bounds of mixing algorithms and show that, under certain assumptions, our algorithms are optimal.Comment: 20 pages, 2 figure

    Quantum walks can find a marked element on any graph

    Full text link
    We solve an open problem by constructing quantum walks that not only detect but also find marked vertices in a graph. In the case when the marked set MM consists of a single vertex, the number of steps of the quantum walk is quadratically smaller than the classical hitting time HT(P,M)HT(P,M) of any reversible random walk PP on the graph. In the case of multiple marked elements, the number of steps is given in terms of a related quantity HT+(P,M)HT^+(\mathit{P,M}) which we call extended hitting time. Our approach is new, simpler and more general than previous ones. We introduce a notion of interpolation between the random walk PP and the absorbing walk PP', whose marked states are absorbing. Then our quantum walk is simply the quantum analogue of this interpolation. Contrary to previous approaches, our results remain valid when the random walk PP is not state-transitive. We also provide algorithms in the cases when only approximations or bounds on parameters pMp_M (the probability of picking a marked vertex from the stationary distribution) and HT+(P,M)HT^+(\mathit{P,M}) are known.Comment: 50 page
    corecore