7,431 research outputs found

    Duality of Graphical Models and Tensor Networks

    Full text link
    In this article we show the duality between tensor networks and undirected graphical models with discrete variables. We study tensor networks on hypergraphs, which we call tensor hypernetworks. We show that the tensor hypernetwork on a hypergraph exactly corresponds to the graphical model given by the dual hypergraph. We translate various notions under duality. For example, marginalization in a graphical model is dual to contraction in the tensor network. Algorithms also translate under duality. We show that belief propagation corresponds to a known algorithm for tensor network contraction. This article is a reminder that the research areas of graphical models and tensor networks can benefit from interaction

    Finiteness conditions for graph algebras over tropical semirings

    Full text link
    Connection matrices for graph parameters with values in a field have been introduced by M. Freedman, L. Lov{\'a}sz and A. Schrijver (2007). Graph parameters with connection matrices of finite rank can be computed in polynomial time on graph classes of bounded tree-width. We introduce join matrices, a generalization of connection matrices, and allow graph parameters to take values in the tropical rings (max-plus algebras) over the real numbers. We show that rank-finiteness of join matrices implies that these graph parameters can be computed in polynomial time on graph classes of bounded clique-width. In the case of graph parameters with values in arbitrary commutative semirings, this remains true for graph classes of bounded linear clique-width. B. Godlin, T. Kotek and J.A. Makowsky (2008) showed that definability of a graph parameter in Monadic Second Order Logic implies rank finiteness. We also show that there are uncountably many integer valued graph parameters with connection matrices or join matrices of fixed finite rank. This shows that rank finiteness is a much weaker assumption than any definability assumption.Comment: 12 pages, accepted for presentation at FPSAC 2014 (Chicago, June 29 -July 3, 2014), to appear in Discrete Mathematics and Theoretical Computer Scienc

    On the exact learnability of graph parameters: The case of partition functions

    Get PDF
    We study the exact learnability of real valued graph parameters ff which are known to be representable as partition functions which count the number of weighted homomorphisms into a graph HH with vertex weights α\alpha and edge weights β\beta. M. Freedman, L. Lov\'asz and A. Schrijver have given a characterization of these graph parameters in terms of the kk-connection matrices C(f,k)C(f,k) of ff. Our model of learnability is based on D. Angluin's model of exact learning using membership and equivalence queries. Given such a graph parameter ff, the learner can ask for the values of ff for graphs of their choice, and they can formulate hypotheses in terms of the connection matrices C(f,k)C(f,k) of ff. The teacher can accept the hypothesis as correct, or provide a counterexample consisting of a graph. Our main result shows that in this scenario, a very large class of partition functions, the rigid partition functions, can be learned in time polynomial in the size of HH and the size of the largest counterexample in the Blum-Shub-Smale model of computation over the reals with unit cost.Comment: 14 pages, full version of the MFCS 2016 conference pape

    Computing on Anonymous Quantum Network

    Full text link
    This paper considers distributed computing on an anonymous quantum network, a network in which no party has a unique identifier and quantum communication and computation are available. It is proved that the leader election problem can exactly (i.e., without error in bounded time) be solved with at most the same complexity up to a constant factor as that of exactly computing symmetric functions (without intermediate measurements for a distributed and superposed input), if the number of parties is given to every party. A corollary of this result is a more efficient quantum leader election algorithm than existing ones: the new quantum algorithm runs in O(n) rounds with bit complexity O(mn^2), on an anonymous quantum network with n parties and m communication links. Another corollary is the first quantum algorithm that exactly computes any computable Boolean function with round complexity O(n) and with smaller bit complexity than that of existing classical algorithms in the worst case over all (computable) Boolean functions and network topologies. More generally, any n-qubit state can be shared with that complexity on an anonymous quantum network with n parties.Comment: 25 page

    Perturbative Relations between Gravity and Gauge Theory

    Get PDF
    We review the relations that have been found between multi-loop scattering amplitudes in gauge theory and gravity, and their implications for ultraviolet divergences in supergravity.Comment: LaTex with package axodraw.sty. 10 pages. Presented by L.D. at Strings 99. Cosmetic changes onl

    Neutral Higgs bosons in the MNMSSM with explicit CP violation

    Full text link
    Within the framework of the minimal non-minimal supersymmetric standard model (MNMSSM) with tadpole terms, CP violation effects in the Higgs sector are investigated at the one-loop level, where the radiative corrections from the loops of the quark and squarks of the third generation are taken into account. Assuming that the squark masses are not degenerate, the radiative corrections due to the stop and sbottom quarks give rise to CP phases, which trigger the CP violation explicitly in the Higgs sector of the MNMSSM. The masses, the branching ratios for dominant decay channels, and the total decay widths of the five neutral Higgs bosons in the MNMSSM are calculated in the presence of the explicit CP violation. The dependence of these quantities on the CP phases is quite recognizable, for given parameter values.Comment: 25 pages, 8 figure
    • …
    corecore