2,780 research outputs found

    Quantum Reverse Shannon Theorem

    Get PDF
    Dual to the usual noisy channel coding problem, where a noisy (classical or quantum) channel is used to simulate a noiseless one, reverse Shannon theorems concern the use of noiseless channels to simulate noisy ones, and more generally the use of one noisy channel to simulate another. For channels of nonzero capacity, this simulation is always possible, but for it to be efficient, auxiliary resources of the proper kind and amount are generally required. In the classical case, shared randomness between sender and receiver is a sufficient auxiliary resource, regardless of the nature of the source, but in the quantum case the requisite auxiliary resources for efficient simulation depend on both the channel being simulated, and the source from which the channel inputs are coming. For tensor power sources (the quantum generalization of classical IID sources), entanglement in the form of standard ebits (maximally entangled pairs of qubits) is sufficient, but for general sources, which may be arbitrarily correlated or entangled across channel inputs, additional resources, such as entanglement-embezzling states or backward communication, are generally needed. Combining existing and new results, we establish the amounts of communication and auxiliary resources needed in both the classical and quantum cases, the tradeoffs among them, and the loss of simulation efficiency when auxiliary resources are absent or insufficient. In particular we find a new single-letter expression for the excess forward communication cost of coherent feedback simulations of quantum channels (i.e. simulations in which the sender retains what would escape into the environment in an ordinary simulation), on non-tensor-power sources in the presence of unlimited ebits but no other auxiliary resource. Our results on tensor power sources establish a strong converse to the entanglement-assisted capacity theorem.Comment: 35 pages, to appear in IEEE-IT. v2 has a fixed proof of the Clueless Eve result, a new single-letter formula for the "spread deficit", better error scaling, and an improved strong converse. v3 and v4 each make small improvements to the presentation and add references. v5 fixes broken reference

    One-shot lossy quantum data compression

    Get PDF
    We provide a framework for one-shot quantum rate distortion coding, in which the goal is to determine the minimum number of qubits required to compress quantum information as a function of the probability that the distortion incurred upon decompression exceeds some specified level. We obtain a one-shot characterization of the minimum qubit compression size for an entanglement-assisted quantum rate-distortion code in terms of the smooth max-information, a quantity previously employed in the one-shot quantum reverse Shannon theorem. Next, we show how this characterization converges to the known expression for the entanglement-assisted quantum rate distortion function for asymptotically many copies of a memoryless quantum information source. Finally, we give a tight, finite blocklength characterization for the entanglement-assisted minimum qubit compression size of a memoryless isotropic qubit source subject to an average symbol-wise distortion constraint.Comment: 36 page

    Distilling common randomness from bipartite quantum states

    Full text link
    The problem of converting noisy quantum correlations between two parties into noiseless classical ones using a limited amount of one-way classical communication is addressed. A single-letter formula for the optimal trade-off between the extracted common randomness and classical communication rate is obtained for the special case of classical-quantum correlations. The resulting curve is intimately related to the quantum compression with classical side information trade-off curve Q(R)Q^*(R) of Hayden, Jozsa and Winter. For a general initial state we obtain a similar result, with a single-letter formula, when we impose a tensor product restriction on the measurements performed by the sender; without this restriction the trade-off is given by the regularization of this function. Of particular interest is a quantity we call ``distillable common randomness'' of a state: the maximum overhead of the common randomness over the one-way classical communication if the latter is unbounded. It is an operational measure of (total) correlation in a quantum state. For classical-quantum correlations it is given by the Holevo mutual information of its associated ensemble, for pure states it is the entropy of entanglement. In general, it is given by an optimization problem over measurements and regularization; for the case of separable states we show that this can be single-letterized.Comment: 22 pages, LaTe

    Properties of Noncommutative Renyi and Augustin Information

    Full text link
    The scaled R\'enyi information plays a significant role in evaluating the performance of information processing tasks by virtue of its connection to the error exponent analysis. In quantum information theory, there are three generalizations of the classical R\'enyi divergence---the Petz's, sandwiched, and log-Euclidean versions, that possess meaningful operational interpretation. However, these scaled noncommutative R\'enyi informations are much less explored compared with their classical counterpart, and lacking crucial properties hinders applications of these quantities to refined performance analysis. The goal of this paper is thus to analyze fundamental properties of scaled R\'enyi information from a noncommutative measure-theoretic perspective. Firstly, we prove the uniform equicontinuity for all three quantum versions of R\'enyi information, hence it yields the joint continuity of these quantities in the orders and priors. Secondly, we establish the concavity in the region of s(1,0)s\in(-1,0) for both Petz's and the sandwiched versions. This completes the open questions raised by Holevo [\href{https://ieeexplore.ieee.org/document/868501/}{\textit{IEEE Trans.~Inf.~Theory}, \textbf{46}(6):2256--2261, 2000}], Mosonyi and Ogawa [\href{https://doi.org/10.1007/s00220-017-2928-4/}{\textit{Commun.~Math.~Phys}, \textbf{355}(1):373--426, 2017}]. For the applications, we show that the strong converse exponent in classical-quantum channel coding satisfies a minimax identity. The established concavity is further employed to prove an entropic duality between classical data compression with quantum side information and classical-quantum channel coding, and a Fenchel duality in joint source-channel coding with quantum side information in the forthcoming papers

    Fully quantum source compression with a quantum helper

    Full text link
    © 2015 IEEE. We study source compression with a helper in the fully quantum regime, extending our earlier result on classical source compression with a quantum helper [arXiv:1501.04366, 2015]. We characterise the quantum resources involved in this problem, and derive a single-letter expression of the achievable rate region when entanglement assistance is available. The direct coding proof is based on a combination of two fundamental protocols, namely the quantum state merging protocol and the quantum reverse Shannon theorem (QRST). This result connects distributed source compression with the QRST protocol, a quantum protocol that consumes noiseless resources to simulate a noisy quantum channel

    Trading quantum for classical resources in quantum data compression

    Get PDF
    We study the visible compression of a source E of pure quantum signal states, or, more formally, the minimal resources per signal required to represent arbitrarily long strings of signals with arbitrarily high fidelity, when the compressor is given the identity of the input state sequence as classical information. According to the quantum source coding theorem, the optimal quantum rate is the von Neumann entropy S(E) qubits per signal. We develop a refinement of this theorem in order to analyze the situation in which the states are coded into classical and quantum bits that are quantified separately. This leads to a trade--off curve Q(R), where Q(R) qubits per signal is the optimal quantum rate for a given classical rate of R bits per signal. Our main result is an explicit characterization of this trade--off function by a simple formula in terms of only single signal, perfect fidelity encodings of the source. We give a thorough discussion of many further mathematical properties of our formula, including an analysis of its behavior for group covariant sources and a generalization to sources with continuously parameterized states. We also show that our result leads to a number of corollaries characterizing the trade--off between information gain and state disturbance for quantum sources. In addition, we indicate how our techniques also provide a solution to the so--called remote state preparation problem. Finally, we develop a probability--free version of our main result which may be interpreted as an answer to the question: ``How many classical bits does a qubit cost?'' This theorem provides a type of dual to Holevo's theorem, insofar as the latter characterizes the cost of coding classical bits into qubits.Comment: 51 pages, 7 figure
    corecore