46,351 research outputs found

    Advances in quantum machine learning

    Get PDF
    Here we discuss advances in the field of quantum machine learning. The following document offers a hybrid discussion; both reviewing the field as it is currently, and suggesting directions for further research. We include both algorithms and experimental implementations in the discussion. The field's outlook is generally positive, showing significant promise. However, we believe there are appreciable hurdles to overcome before one can claim that it is a primary application of quantum computation.Comment: 38 pages, 17 Figure

    Quantum Random Self-Modifiable Computation

    Full text link
    Among the fundamental questions in computer science, at least two have a deep impact on mathematics. What can computation compute? How many steps does a computation require to solve an instance of the 3-SAT problem? Our work addresses the first question, by introducing a new model called the ex-machine. The ex-machine executes Turing machine instructions and two special types of instructions. Quantum random instructions are physically realizable with a quantum random number generator. Meta instructions can add new states and add new instructions to the ex-machine. A countable set of ex-machines is constructed, each with a finite number of states and instructions; each ex-machine can compute a Turing incomputable language, whenever the quantum randomness measurements behave like unbiased Bernoulli trials. In 1936, Alan Turing posed the halting problem for Turing machines and proved that this problem is unsolvable for Turing machines. Consider an enumeration E_a(i) = (M_i, T_i) of all Turing machines M_i and initial tapes T_i. Does there exist an ex-machine X that has at least one evolutionary path X --> X_1 --> X_2 --> . . . --> X_m, so at the mth stage ex-machine X_m can correctly determine for 0 <= i <= m whether M_i's execution on tape T_i eventually halts? We demonstrate an ex-machine Q(x) that has one such evolutionary path. The existence of this evolutionary path suggests that David Hilbert was not misguided to propose in 1900 that mathematicians search for finite processes to help construct mathematical proofs. Our refinement is that we cannot use a fixed computer program that behaves according to a fixed set of mechanical rules. We must pursue methods that exploit randomness and self-modification so that the complexity of the program can increase as it computes.Comment: 50 pages, 3 figure

    Prediction of Atomization Energy Using Graph Kernel and Active Learning

    Get PDF
    Data-driven prediction of molecular properties presents unique challenges to the design of machine learning methods concerning data structure/dimensionality, symmetry adaption, and confidence management. In this paper, we present a kernel-based pipeline that can learn and predict the atomization energy of molecules with high accuracy. The framework employs Gaussian process regression to perform predictions based on the similarity between molecules, which is computed using the marginalized graph kernel. To apply the marginalized graph kernel, a spatial adjacency rule is first employed to convert molecules into graphs whose vertices and edges are labeled by elements and interatomic distances, respectively. We then derive formulas for the efficient evaluation of the kernel. Specific functional components for the marginalized graph kernel are proposed, while the effect of the associated hyperparameters on accuracy and predictive confidence are examined. We show that the graph kernel is particularly suitable for predicting extensive properties because its convolutional structure coincides with that of the covariance formula between sums of random variables. Using an active learning procedure, we demonstrate that the proposed method can achieve a mean absolute error of 0.62 +- 0.01 kcal/mol using as few as 2000 training samples on the QM7 data set

    Isogeny-based post-quantum key exchange protocols

    Get PDF
    The goal of this project is to understand and analyze the supersingular isogeny Diffie Hellman (SIDH), a post-quantum key exchange protocol which security lies on the isogeny-finding problem between supersingular elliptic curves. In order to do so, we first introduce the reader to cryptography focusing on key agreement protocols and motivate the rise of post-quantum cryptography as a necessity with the existence of the model of quantum computation. We review some of the known attacks on the SIDH and finally study some algorithmic aspects to understand how the protocol can be implemented
    • …
    corecore