459 research outputs found

    Quality-of-service management in IP networks

    Get PDF
    Quality of Service (QoS) in Internet Protocol (IF) Networks has been the subject of active research over the past two decades. Integrated Services (IntServ) and Differentiated Services (DiffServ) QoS architectures have emerged as proposed standards for resource allocation in IF Networks. These two QoS architectures support the need for multiple traffic queuing systems to allow for resource partitioning for heterogeneous applications making use of the networks. There have been a number of specifications or proposals for the number of traffic queuing classes (Class of Service (CoS)) that will support integrated services in IF Networks, but none has provided verification in the form of analytical or empirical investigation to prove that its specification or proposal will be optimum. Despite the existence of the two standard QoS architectures and the large volume of research work that has been carried out on IF QoS, its deployment still remains elusive in the Internet. This is not unconnected with the complexities associated with some aspects of the standard QoS architectures. [Continues.

    TCP flow aware adaptive path switching in diffserv enabled MPLS networks

    Get PDF
    Cataloged from PDF version of article.We propose an adaptive flow-level multi-path routing-based traffic engineering solution for an IP backbone network carrying TCP/IP traffic. Incoming TCP flows are switched between two explicitly routed paths, namely the primary and secondary paths (PP and SP), for resilience and potential goodput improvement at the TCP layer. In the proposed architecture, PPs receive a preferential treatment over SPs using differentiated services mechanisms. The reason for this choice is not for service differentiation but for coping with the detrimental knock-on effect stemming from the use of longer SP that is well known for conventional network load balancing algorithms. Moreover, both paths are congestion-controlled using Explicit Congestion Notification marking at the core and Additive Increase Multiplicative Decrease rate adjustment at the ingress nodes. The delay difference between PP and SP is estimated using two per-egress rate-controlling buffers maintained at the ingress nodes for each path, and this delay difference is used to determine the path over which a new TCP flow will be routed. We perform extensive simulations using ns-2 in order to demonstrate the viability of the proposed distributed adaptive multi-path routing method in terms of per-flow TCP goodput. The proposed solution consistently outperforms the single-path routing policy and provides substantial per-flow goodput gains under poor PP conditions. Moreover, highest goodput improvements under the proposed scheme are achieved by flows that receive the lowest goodputs with single-path routing, while the performance of the flows with high goodputs with single-path routing does not deteriorate with the proposed path switching technique. Copyright # 2011 John Wiley & Sons, Ltd

    Packet loss optimization in router forwarding tasks based on the particle swarm algorithm

    Get PDF
    Software-defined networks (SDNs) are computer networks where parameters and devices are configured by software. Recently, artificial intelligence aspects have been used for SDN programs for various applications, including packet classification and forwarding according to the quality of service (QoS) requirements. The main problem is that when packets from different applications pass through computer networks, they have different QoS criteria. To meet the requirements of packets, routers classify these packets, add them to multiple weighting queue systems, and forward them according to their priorities. Multiple queue systems in routers usually use a class-based weighted round-robin (CBWRR) scheduling algorithm with pre-configured fixed weights for each priority queue. The problem is that the intensity of traffic in general and of each packet class occasionally changes. Therefore, in this work, we suggest using the particle swarm optimization algorithm to find the optimal weights for the weighted fair round-robin algorithm (WFRR) by considering the variable densities of the traffic. This work presents a framework to simulate router operations by determining the weights and schedule packets and forwarding them. The proposed algorithm to optimize the weights is compared with the conventional WFRR algorithm, and the results show that the particle swarm optimization for the weighted round-robin algorithm is more efficient than WFRR, especially in high-intensity traffic. Moreover, the average packet-loss ratio does not exceed 7%, and the proposed algorithms are better than the conventional CBWRR algorithm and the related work results

    Priority Scheduling Algorithm for Traffic in a LTE-based Defence Mesh Network Incorporating Centralised Scheduling Architecture

    Get PDF
    Wireless mesh networks (WMN) are the networks of future and can operate on multiple protocols ranging from WiFi, WiMax to long term evolution (LTE). As a recent trend defence networks are incorporating off-the-shelf, state of the art commercial protocols to enhance the capability of their networks. LTE is one such commercially available protocol which is easy to deploy and provide high data rate which can be ideally implemented in WMN for defence networks. To enable these high data rate services LTE-based defence mesh networks (DMN) are the requirement of the day and future. However, LTE-based DMN are prone to congestion at times of active operations or full-fledged war. The congestion scenarios may lead to LTE packet loss. Hence, it is pertinent that these networks amalgamate information grooming algorithms to alleviate the throughput of the network in peak hour conditions. An efficient priority scheduling algorithm based on class of service prioritisation, data rate consumption and location of origin of traffic in the DMN is proposed. The simulations demonstrate that by incorporating the proposed priority scheduling algorithm, the overall packet loss of priority packets in the DMN reduces substantially

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    Parallel Modular Scheduler Design for Clos Switches in Optical Data Center Networks

    Get PDF
    As data centers enter the exascale computing era, the traffic exchanged between internal network nodes, increases exponentially. Optical networking is an attractive solution to deliver the high capacity, low latency, and scalable interconnection needed. Among other switching methods, packet switching is particularly interesting as it can be widely deployed in the network to handle rapidly-changing traffic of arbitrary size. Nanosecond-reconfigurable photonic integrated switch fabrics, built as multi-stage architectures such as the Clos network, are key enablers to scalable packet switching. However, the accompanying control plane needs to also operate on packet timescales. Designing a central scheduler, to control an optical packet switch in nanoseconds, presents a challenge especially as the switch size increases. To this end, we present a highly-parallel, modular scheduler design for Clos switches along with a proposed routing scheme to enable nanosecond scalable scheduling. We synthesize our scheduler as an application-specific integrated circuit (ASIC) and demonstrate scaling to a 256 Ă— 256 size with an ultra-low scheduling delay of only 6.0 ns. In a cycle-accurate rack-scale network emulation, for this switch size, we show a minimum end-to-end latency of 30.8 ns and maintain nanosecond average latency up to 80% of input traffic load. We achieve zero packet loss and short-tailed packet latency distributions for all traffic loads and switch sizes. Our work is compared to state-of-the-art optical switches, in terms of scheduling delay, packet latency, and switch throughput

    Unary Coding Controlled Simultaneous Wireless Information and Power Transfer

    Get PDF
    Radio frequency (RF) signals have been relied upon for both wireless information delivery and wireless charging to the massively deployed low-power Internet of Things (IoT) devices. Extensive efforts have been invested in physical layer and medium-access-control layer design for coordinating simultaneous wireless information and power transfer (SWIPT) in RF bands. Different from the existing works, we study the coding controlled SWIPT from the information theoretical perspective with practical transceiver. Due to its practical decoding implementation and its flexibility on the codeword structure, unary code is chosen for joint information and energy encoding. Wireless power transfer (WPT) performance in terms of energy harvested per binary sign and of battery overflow/underflow probability is maximised by optimising the codeword distribution of coded information source, while satisfying required wireless information transfer (WIT) performance in terms of mutual information. Furthermore, a Genetic Algorithm (GA) aided coding design is proposed to reduce the computational complexity. Numerical results characterise the SWIPT performance and validate the optimality of our proposed GA aided unary coding design

    Optimal Access Point Power Management for Green IEEE 802.11 Networks

    Get PDF
    In this paper, we present an approach and an algorithm aimed at minimising the energy consumption of enterprise Wireless Local Area Networks (WLANs) during periods of low user activity. We act on two network management aspects: powering off some Access Points (APs), and choosing the level of transmission power of each AP. An efficient technique to allocate the user terminals to the various APs is the key to achieving this goal. The approach has been formulated as an integer programming problem with nonlinear constraints, which comes from a general but accurate characterisation of the WLAN. This general problem formulation has two implications: the formulation is widely applicable, but the nonlinearity makes it NP-hard. To solve this problem to optimality, we devised an exact algorithm based on a customised version of Benders’ decomposition method. The computational results proved the ability to obtain remarkable power savings. In addition, the good performance of our algorithm in terms of solving times paves the way for its future deployment in real WLANs.publishedVersio
    • …
    corecore