16,117 research outputs found

    Communication Enhancement Through Quantum Coherent Control of NN Channels in an Indefinite Causal-order Scenario

    Full text link
    In quantum Shannon theory, transmission of information is enhanced by quantum features. Up to very recently, the trajectories of transmission remained fully classical. Recently, a new paradigm was proposed by playing quantum tricks on two completely depolarizing quantum channels i.e. using coherent control in space or time of the two quantum channels. We extend here this control to the transmission of information through a network of an arbitrary number NN of channels with arbitrary individual capacity i.e. information preservation characteristics in the case of indefinite causal order. We propose a formalism to assess information transmission in the most general case of NN channels in an indefinite causal order scenario yielding the output of such transmission. Then we explicitly derive the quantum switch output and the associated Holevo limit of the information transmission for N=2N=2, N=3N=3 as a function of all involved parameters. We find in the case N=3N=3 that the transmission of information for three channels is twice of transmission of the two channel case when a full superposition of all possible causal orders is used

    Factoring Safe Semiprimes with a Single Quantum Query

    Full text link
    Shor's factoring algorithm (SFA), by its ability to efficiently factor large numbers, has the potential to undermine contemporary encryption. At its heart is a process called order finding, which quantum mechanics lets us perform efficiently. SFA thus consists of a \emph{quantum order finding algorithm} (QOFA), bookended by classical routines which, given the order, return the factors. But, with probability up to 1/21/2, these classical routines fail, and QOFA must be rerun. We modify these routines using elementary results in number theory, improving the likelihood that they return the factors. The resulting quantum factoring algorithm is better than SFA at factoring safe semiprimes, an important class of numbers used in cryptography. With just one call to QOFA, our algorithm almost always factors safe semiprimes. As well as a speed-up, improving efficiency gives our algorithm other, practical advantages: unlike SFA, it does not need a randomly picked input, making it simpler to construct in the lab; and in the (unlikely) case of failure, the same circuit can be rerun, without modification. We consider generalizing this result to other cases, although we do not find a simple extension, and conclude that SFA is still the best algorithm for general numbers (non safe semiprimes, in other words). Even so, we present some simple number theoretic tricks for improving SFA in this case.Comment: v2 : Typo correction and rewriting for improved clarity v3 : Slight expansion, for improved clarit

    Exact Results in SO(11) SUSY Gauge Theories with Spinor and Vector Matter

    Get PDF
    We investigate the confining phase vacuum structure of supersymmetric SO(11) gauge theories with one spinor matter field and Nf \le 6 vectors. We describe several useful tricks and tools that facilitate the analysis of these chiral models and many other theories of similar type. The forms of the Nf=5 and Nf=6 quantum moduli spaces are deduced by requiring that they reproduce known results for SU(5) SUSY QCD along the spinor flat direction. After adding mass terms for vector fields and integrating out heavy degrees of freedom, we also determine the dynamically generated superpotentials in the Nf \le 4 quantum theories. We close with some remarks regarding magnetic duals to the Nf \ge 7 electric SO(11) theories.Comment: 16 pages, harvmac and tables macro
    • …
    corecore