267 research outputs found

    Approximate Approximation on a Quantum Annealer

    Full text link
    Many problems of industrial interest are NP-complete, and quickly exhaust resources of computational devices with increasing input sizes. Quantum annealers (QA) are physical devices that aim at this class of problems by exploiting quantum mechanical properties of nature. However, they compete with efficient heuristics and probabilistic or randomised algorithms on classical machines that allow for finding approximate solutions to large NP-complete problems. While first implementations of QA have become commercially available, their practical benefits are far from fully explored. To the best of our knowledge, approximation techniques have not yet received substantial attention. In this paper, we explore how problems' approximate versions of varying degree can be systematically constructed for quantum annealer programs, and how this influences result quality or the handling of larger problem instances on given set of qubits. We illustrate various approximation techniques on both, simulations and real QA hardware, on different seminal problems, and interpret the results to contribute towards a better understanding of the real-world power and limitations of current-state and future quantum computing.Comment: Proceedings of the 17th ACM International Conference on Computing Frontiers (CF 2020

    Time-Sliced Quantum Circuit Partitioning for Modular Architectures

    Full text link
    Current quantum computer designs will not scale. To scale beyond small prototypes, quantum architectures will likely adopt a modular approach with clusters of tightly connected quantum bits and sparser connections between clusters. We exploit this clustering and the statically-known control flow of quantum programs to create tractable partitioning heuristics which map quantum circuits to modular physical machines one time slice at a time. Specifically, we create optimized mappings for each time slice, accounting for the cost to move data from the previous time slice and using a tunable lookahead scheme to reduce the cost to move to future time slices. We compare our approach to a traditional statically-mapped, owner-computes model. Our results show strict improvement over the static mapping baseline. We reduce the non-local communication overhead by 89.8\% in the best case and by 60.9\% on average. Our techniques, unlike many exact solver methods, are computationally tractable.Comment: Appears in CF'20: ACM International Conference on Computing Frontier

    Trainable Variational Quantum-Multiblock ADMM Algorithm for Generation Scheduling

    Full text link
    The advent of quantum computing can potentially revolutionize how complex problems are solved. This paper proposes a two-loop quantum-classical solution algorithm for generation scheduling by infusing quantum computing, machine learning, and distributed optimization. The aim is to facilitate employing noisy near-term quantum machines with a limited number of qubits to solve practical power system optimization problems such as generation scheduling. The outer loop is a 3-block quantum alternative direction method of multipliers (QADMM) algorithm that decomposes the generation scheduling problem into three subproblems, including one quadratically unconstrained binary optimization (QUBO) and two non-QUBOs. The inner loop is a trainable quantum approximate optimization algorithm (T-QAOA) for solving QUBO on a quantum computer. The proposed T-QAOA translates interactions of quantum-classical machines as sequential information and uses a recurrent neural network to estimate variational parameters of the quantum circuit with a proper sampling technique. T-QAOA determines the QUBO solution in a few quantum-learner iterations instead of hundreds of iterations needed for a quantum-classical solver. The outer 3-block ADMM coordinates QUBO and non-QUBO solutions to obtain the solution to the original problem. The conditions under which the proposed QADMM is guaranteed to converge are discussed. Two mathematical and three generation scheduling cases are studied. Analyses performed on quantum simulators and classical computers show the effectiveness of the proposed algorithm. The advantages of T-QAOA are discussed and numerically compared with QAOA which uses a stochastic gradient descent-based optimizer.Comment: 11 page

    Quantum system characterization with limited resources

    Full text link
    The construction and operation of large scale quantum information devices presents a grand challenge. A major issue is the effective control of coherent evolution, which requires accurate knowledge of the system dynamics that may vary from device to device. We review strategies for obtaining such knowledge from minimal initial resources and in an efficient manner, and apply these to the problem of characterization of a qubit embedded into a larger state manifold, made tractable by exploiting prior structural knowledge. We also investigate adaptive sampling for estimation of multiple parameters

    Inferring Quantum Network Topology using Local Measurements

    Full text link
    Statistical correlations that can be generated across the nodes in a quantum network depend crucially on its topology. However, this topological information might not be known a priori, or it may need to be verified. In this paper, we propose an efficient protocol for distinguishing and inferring the topology of a quantum network. We leverage entropic quantities -- namely, the von Neumann entropy and the measured mutual information -- as well as measurement covariance to uniquely characterize the topology. We show that the entropic quantities are sufficient to distinguish two networks that prepare GHZ states. Moreover, if qubit measurements are available, both entropic quantities and covariance can be used to infer the network topology. We show that the protocol can be entirely robust to noise and can be implemented via quantum variational optimization. Numerical experiments on both classical simulators and quantum hardware show that covariance is generally more reliable for accurately and efficiently inferring the topology, whereas entropy-based methods are often better at identifying the absence of entanglement in the low-shot regime
    • …
    corecore