27 research outputs found

    Quantum Network Code for Multiple-Unicast Network with Quantum Invertible Linear Operations

    Get PDF
    This paper considers the communication over a quantum multiple-unicast network where r sender-receiver pairs communicate independent quantum states. We concretely construct a quantum network code for the quantum multiple-unicast network as a generalization of the code [Song and Hayashi, arxiv:1801.03306, 2018] for the quantum unicast network. When the given node operations are restricted to invertible linear operations between bit basis states and the rates of transmissions and interferences are restricted, our code certainly transmits a quantum state for each sender-receiver pair by n-use of the network asymptotically, which guarantees no information leakage to the other users. Our code is implemented only by the coding operation in the senders and receivers and employs no classical communication and no manipulation of the node operations. Several networks that our code can be applied are also given

    Secure Quantum Network Code without Classical Communication

    Full text link
    We consider the secure quantum communication over a network with the presence of a malicious adversary who can eavesdrop and contaminate the states. The network consists of noiseless quantum channels with the unit capacity and the nodes which applies noiseless quantum operations. As the main result, when the maximum number m1 of the attacked channels over the entire network uses is less than a half of the network transmission rate m0 (i.e., m1 < m0 / 2), our code implements secret and correctable quantum communication of the rate m0 - 2m1 by using the network asymptotic number of times. Our code is universal in the sense that the code is constructed without the knowledge of the specific node operations and the network topology, but instead, every node operation is constrained to the application of an invertible matrix to the basis states. Moreover, our code requires no classical communication. Our code can be thought of as a generalization of the quantum secret sharing

    Computation in Multicast Networks: Function Alignment and Converse Theorems

    Full text link
    The classical problem in network coding theory considers communication over multicast networks. Multiple transmitters send independent messages to multiple receivers which decode the same set of messages. In this work, computation over multicast networks is considered: each receiver decodes an identical function of the original messages. For a countably infinite class of two-transmitter two-receiver single-hop linear deterministic networks, the computing capacity is characterized for a linear function (modulo-2 sum) of Bernoulli sources. Inspired by the geometric concept of interference alignment in networks, a new achievable coding scheme called function alignment is introduced. A new converse theorem is established that is tighter than cut-set based and genie-aided bounds. Computation (vs. communication) over multicast networks requires additional analysis to account for multiple receivers sharing a network's computational resources. We also develop a network decomposition theorem which identifies elementary parallel subnetworks that can constitute an original network without loss of optimality. The decomposition theorem provides a conceptually-simpler algebraic proof of achievability that generalizes to LL-transmitter LL-receiver networks.Comment: to appear in the IEEE Transactions on Information Theor

    Network Coding Applications

    Get PDF
    Network coding is an elegant and novel technique introduced at the turn of the millennium to improve network throughput and performance. It is expected to be a critical technology for networks of the future. This tutorial deals with wireless and content distribution networks, considered to be the most likely applications of network coding, and it also reviews emerging applications of network coding such as network monitoring and management. Multiple unicasts, security, networks with unreliable links, and quantum networks are also addressed. The preceding companion deals with theoretical foundations of network coding

    Telecommunications Networks

    Get PDF
    This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing

    Proceedings of the 35th WIC Symposium on Information Theory in the Benelux and the 4th joint WIC/IEEE Symposium on Information Theory and Signal Processing in the Benelux, Eindhoven, the Netherlands May 12-13, 2014

    Get PDF
    Compressive sensing (CS) as an approach for data acquisition has recently received much attention. In CS, the signal recovery problem from the observed data requires the solution of a sparse vector from an underdetermined system of equations. The underlying sparse signal recovery problem is quite general with many applications and is the focus of this talk. The main emphasis will be on Bayesian approaches for sparse signal recovery. We will examine sparse priors such as the super-Gaussian and student-t priors and appropriate MAP estimation methods. In particular, re-weighted l2 and re-weighted l1 methods developed to solve the optimization problem will be discussed. The talk will also examine a hierarchical Bayesian framework and then study in detail an empirical Bayesian method, the Sparse Bayesian Learning (SBL) method. If time permits, we will also discuss Bayesian methods for sparse recovery problems with structure; Intra-vector correlation in the context of the block sparse model and inter-vector correlation in the context of the multiple measurement vector problem
    corecore