1,402 research outputs found

    Quantum Lower Bounds for Approximate Counting via Laurent Polynomials

    Get PDF
    We study quantum algorithms that are given access to trusted and untrusted quantum witnesses. We establish strong limitations of such algorithms, via new techniques based on Laurent polynomials (i.e., polynomials with positive and negative integer exponents). Specifically, we resolve the complexity of approximate counting, the problem of multiplicatively estimating the size of a nonempty set S ? [N], in two natural generalizations of quantum query complexity. Our first result holds in the standard Quantum Merlin - Arthur (QMA) setting, in which a quantum algorithm receives an untrusted quantum witness. We show that, if the algorithm makes T quantum queries to S, and also receives an (untrusted) m-qubit quantum witness, then either m = ?(|S|) or T = ?(?{N/|S|}). This is optimal, matching the straightforward protocols where the witness is either empty, or specifies all the elements of S. As a corollary, this resolves the open problem of giving an oracle separation between SBP, the complexity class that captures approximate counting, and QMA. In our second result, we ask what if, in addition to a membership oracle for S, a quantum algorithm is also given "QSamples" - i.e., copies of the state |S? = 1/?|S| ?_{i ? S} |i? - or even access to a unitary transformation that enables QSampling? We show that, even then, the algorithm needs either ?(?{N/|S|}) queries or else ?(min{|S|^{1/3},?{N/|S|}}) QSamples or accesses to the unitary. Our lower bounds in both settings make essential use of Laurent polynomials, but in different ways

    Unitary property testing lower bounds by polynomials

    Get PDF
    We study unitary property testing, where a quantum algorithm is given query access to a black-box unitary and has to decide whether it satisfies some property. In addition to containing the standard quantum query complexity model (where the unitary encodes a binary string) as a special case, this model contains "inherently quantum" problems that have no classical analogue. Characterizing the query complexity of these problems requires new algorithmic techniques and lower bound methods. Our main contribution is a generalized polynomial method for unitary property testing problems. By leveraging connections with invariant theory, we apply this method to obtain lower bounds on problems such as determining recurrence times of unitaries, approximating the dimension of a marked subspace, and approximating the entanglement entropy of a marked state. We also present a unitary property testing-based approach towards an oracle separation between QMA\mathsf{QMA} and QMA(2)\mathsf{QMA(2)}, a long standing question in quantum complexity theory.Comment: 58 pages, v2: typos corrected, Section 6.1-6.3 revised, added some new result

    P versus NP and geometry

    Get PDF
    I describe three geometric approaches to resolving variants of P v. NP, present several results that illustrate the role of group actions in complexity theory, and make a first step towards completely geometric definitions of complexity classes.Comment: 20 pages, to appear in special issue of J. Symbolic. Comp. dedicated to MEGA 200

    Unitary Property Testing Lower Bounds by Polynomials

    Get PDF
    We study unitary property testing, where a quantum algorithm is given query access to a black-box unitary and has to decide whether it satisfies some property. In addition to containing the standard quantum query complexity model (where the unitary encodes a binary string) as a special case, this model contains "inherently quantum" problems that have no classical analogue. Characterizing the query complexity of these problems requires new algorithmic techniques and lower bound methods. Our main contribution is a generalized polynomial method for unitary property testing problems. By leveraging connections with invariant theory, we apply this method to obtain lower bounds on problems such as determining recurrence times of unitaries, approximating the dimension of a marked subspace, and approximating the entanglement entropy of a marked state. We also present a unitary property testing-based approach towards an oracle separation between QMA and QMA(2), a long standing question in quantum complexity theory

    Rounding Sum-of-Squares Relaxations

    Get PDF
    We present a general approach to rounding semidefinite programming relaxations obtained by the Sum-of-Squares method (Lasserre hierarchy). Our approach is based on using the connection between these relaxations and the Sum-of-Squares proof system to transform a *combining algorithm* -- an algorithm that maps a distribution over solutions into a (possibly weaker) solution -- into a *rounding algorithm* that maps a solution of the relaxation to a solution of the original problem. Using this approach, we obtain algorithms that yield improved results for natural variants of three well-known problems: 1) We give a quasipolynomial-time algorithm that approximates the maximum of a low degree multivariate polynomial with non-negative coefficients over the Euclidean unit sphere. Beyond being of interest in its own right, this is related to an open question in quantum information theory, and our techniques have already led to improved results in this area (Brand\~{a}o and Harrow, STOC '13). 2) We give a polynomial-time algorithm that, given a d dimensional subspace of R^n that (almost) contains the characteristic function of a set of size n/k, finds a vector vv in the subspace satisfying v44>c(k/d1/3)v22|v|_4^4 > c(k/d^{1/3}) |v|_2^2, where vp=(Eivip)1/p|v|_p = (E_i v_i^p)^{1/p}. Aside from being a natural relaxation, this is also motivated by a connection to the Small Set Expansion problem shown by Barak et al. (STOC 2012) and our results yield a certain improvement for that problem. 3) We use this notion of L_4 vs. L_2 sparsity to obtain a polynomial-time algorithm with substantially improved guarantees for recovering a planted μ\mu-sparse vector v in a random d-dimensional subspace of R^n. If v has mu n nonzero coordinates, we can recover it with high probability whenever μ<O(min(1,n/d2))\mu < O(\min(1,n/d^2)), improving for d<n2/3d < n^{2/3} prior methods which intrinsically required μ<O(1/(d))\mu < O(1/\sqrt(d))

    On the Exact Evaluation of Certain Instances of the Potts Partition Function by Quantum Computers

    Get PDF
    We present an efficient quantum algorithm for the exact evaluation of either the fully ferromagnetic or anti-ferromagnetic q-state Potts partition function Z for a family of graphs related to irreducible cyclic codes. This problem is related to the evaluation of the Jones and Tutte polynomials. We consider the connection between the weight enumerator polynomial from coding theory and Z and exploit the fact that there exists a quantum algorithm for efficiently estimating Gauss sums in order to obtain the weight enumerator for a certain class of linear codes. In this way we demonstrate that for a certain class of sparse graphs, which we call Irreducible Cyclic Cocycle Code (ICCC_\epsilon) graphs, quantum computers provide a polynomial speed up in the difference between the number of edges and vertices of the graph, and an exponential speed up in q, over the best classical algorithms known to date

    Sum-of-Squares Certificates for Maxima of Random Tensors on the Sphere

    Get PDF
    For an nn-variate order-dd tensor AA, define Amax:=supx2=1A,xd A_{\max} := \sup_{\| x \|_2 = 1} \langle A , x^{\otimes d} \rangle to be the maximum value taken by the tensor on the unit sphere. It is known that for a random tensor with i.i.d ±1\pm 1 entries, AmaxndlogdA_{\max} \lesssim \sqrt{n\cdot d\cdot\log d} w.h.p. We study the problem of efficiently certifying upper bounds on AmaxA_{\max} via the natural relaxation from the Sum of Squares (SoS) hierarchy. Our results include: - When AA is a random order-qq tensor, we prove that qq levels of SoS certifies an upper bound BB on AmaxA_{\max} that satisfies B      Amax(nq1o(1))q/41/2w.h.p. B ~~~~\leq~~ A_{\max} \cdot \biggl(\frac{n}{q^{\,1-o(1)}}\biggr)^{q/4-1/2} \quad \text{w.h.p.} Our upper bound improves a result of Montanari and Richard (NIPS 2014) when qq is large. - We show the above bound is the best possible up to lower order terms, namely the optimum of the level-qq SoS relaxation is at least Amax(nq1+o(1))q/41/2 . A_{\max} \cdot \biggl(\frac{n}{q^{\,1+o(1)}}\biggr)^{q/4-1/2} \ . - When AA is a random order-dd tensor, we prove that qq levels of SoS certifies an upper bound BB on AmaxA_{\max} that satisfies B    Amax(O~(n)q)d/41/2w.h.p. B ~~\leq ~~ A_{\max} \cdot \biggl(\frac{\widetilde{O}(n)}{q}\biggr)^{d/4 - 1/2} \quad \text{w.h.p.} For growing qq, this improves upon the bound certified by constant levels of SoS. This answers in part, a question posed by Hopkins, Shi, and Steurer (COLT 2015), who established the tight characterization for constant levels of SoS
    corecore