2,254 research outputs found

    From communication complexity to an entanglement spread area law in the ground state of gapped local Hamiltonians

    Full text link
    In this work, we make a connection between two seemingly different problems. The first problem involves characterizing the properties of entanglement in the ground state of gapped local Hamiltonians, which is a central topic in quantum many-body physics. The second problem is on the quantum communication complexity of testing bipartite states with EPR assistance, a well-known question in quantum information theory. We construct a communication protocol for testing (or measuring) the ground state and use its communication complexity to reveal a new structural property for the ground state entanglement. This property, known as the entanglement spread, roughly measures the ratio between the largest and the smallest Schmidt coefficients across a cut in the ground state. Our main result shows that gapped ground states possess limited entanglement spread across any cut, exhibiting an "area law" behavior. Our result quite generally applies to any interaction graph with an improved bound for the special case of lattices. This entanglement spread area law includes interaction graphs constructed in [Aharonov et al., FOCS'14] that violate a generalized area law for the entanglement entropy. Our construction also provides evidence for a conjecture in physics by Li and Haldane on the entanglement spectrum of lattice Hamiltonians [Li and Haldane, PRL'08]. On the technical side, we use recent advances in Hamiltonian simulation algorithms along with quantum phase estimation to give a new construction for an approximate ground space projector (AGSP) over arbitrary interaction graphs.Comment: 29 pages, 1 figur

    Exponential Lower Bounds for Polytopes in Combinatorial Optimization

    Get PDF
    We solve a 20-year old problem posed by Yannakakis and prove that there exists no polynomial-size linear program (LP) whose associated polytope projects to the traveling salesman polytope, even if the LP is not required to be symmetric. Moreover, we prove that this holds also for the cut polytope and the stable set polytope. These results were discovered through a new connection that we make between one-way quantum communication protocols and semidefinite programming reformulations of LPs.Comment: 19 pages, 4 figures. This version of the paper will appear in the Journal of the ACM. The earlier conference version in STOC'12 had the title "Linear vs. Semidefinite Extended Formulations: Exponential Separation and Strong Lower Bounds

    Report on "Geometry and representation theory of tensors for computer science, statistics and other areas."

    Full text link
    This is a technical report on the proceedings of the workshop held July 21 to July 25, 2008 at the American Institute of Mathematics, Palo Alto, California, organized by Joseph Landsberg, Lek-Heng Lim, Jason Morton, and Jerzy Weyman. We include a list of open problems coming from applications in 4 different areas: signal processing, the Mulmuley-Sohoni approach to P vs. NP, matchgates and holographic algorithms, and entanglement and quantum information theory. We emphasize the interactions between geometry and representation theory and these applied areas

    Towards Stronger Counterexamples to the Log-Approximate-Rank Conjecture

    Get PDF
    We give improved separations for the query complexity analogue of the log-approximate-rank conjecture i.e. we show that there are a plethora of total Boolean functions on nn input bits, each of which has approximate Fourier sparsity at most O(n3)O(n^3) and randomized parity decision tree complexity Θ(n)\Theta(n). This improves upon the recent work of Chattopadhyay, Mande and Sherif (JACM '20) both qualitatively (in terms of designing a large number of examples) and quantitatively (improving the gap from quartic to cubic). We leave open the problem of proving a randomized communication complexity lower bound for XOR compositions of our examples. A linear lower bound would lead to new and improved refutations of the log-approximate-rank conjecture. Moreover, if any of these compositions had even a sub-linear cost randomized communication protocol, it would demonstrate that randomized parity decision tree complexity does not lift to randomized communication complexity in general (with the XOR gadget)

    An algorithm to explore entanglement in small systems

    Full text link
    A quantum state's entanglement across a bipartite cut can be quantified with entanglement entropy or, more generally, Schmidt norms. Using only Schmidt decompositions, we present a simple iterative algorithm to maximize Schmidt norms. Depending on the choice of norm, the optimizing states maximize or minimize entanglement, possibly across several bipartite cuts at the same time and possibly only among states in a specified subspace. Recognizing that convergence but not success is certain, we use the algorithm to explore topics ranging from fermionic reduced density matrices and varieties of pure quantum states to absolutely maximally entangled states and minimal output entropy of channels.Comment: Published version, 20 page

    Numerical Study of Quantum Resonances in Chaotic Scattering

    Full text link
    This paper presents numerical evidence that for quantum systems with chaotic classical dynamics, the number of scattering resonances near an energy EE scales like D(KE)+12\hbar^{-\frac{D(K_E)+1}{2}} as 0\hbar\to{0}. Here, KEK_E denotes the subset of the classical energy surface {H=E}\{H=E\} which stays bounded for all time under the flow generated by the Hamiltonian HH and D(KE)D(K_E) denotes its fractal dimension. Since the number of bound states in a quantum system with nn degrees of freedom scales like n\hbar^{-n}, this suggests that the quantity D(KE)+12\frac{D(K_E)+1}{2} represents the effective number of degrees of freedom in scattering problems.Comment: 24 pages, including 44 figure

    Limitations of semidefinite programs for separable states and entangled games

    Get PDF
    Semidefinite programs (SDPs) are a framework for exact or approximate optimization that have widespread application in quantum information theory. We introduce a new method for using reductions to construct integrality gaps for SDPs. These are based on new limitations on the sum-of-squares (SoS) hierarchy in approximating two particularly important sets in quantum information theory, where previously no ω(1)\omega(1)-round integrality gaps were known: the set of separable (i.e. unentangled) states, or equivalently, the 242 \rightarrow 4 norm of a matrix, and the set of quantum correlations; i.e. conditional probability distributions achievable with local measurements on a shared entangled state. In both cases no-go theorems were previously known based on computational assumptions such as the Exponential Time Hypothesis (ETH) which asserts that 3-SAT requires exponential time to solve. Our unconditional results achieve the same parameters as all of these previous results (for separable states) or as some of the previous results (for quantum correlations). In some cases we can make use of the framework of Lee-Raghavendra-Steurer (LRS) to establish integrality gaps for any SDP, not only the SoS hierarchy. Our hardness result on separable states also yields a dimension lower bound of approximate disentanglers, answering a question of Watrous and Aaronson et al. These results can be viewed as limitations on the monogamy principle, the PPT test, the ability of Tsirelson-type bounds to restrict quantum correlations, as well as the SDP hierarchies of Doherty-Parrilo-Spedalieri, Navascues-Pironio-Acin and Berta-Fawzi-Scholz.Comment: 47 pages. v2. small changes, fixes and clarifications. published versio

    Cryptography from tensor problems

    Get PDF
    We describe a new proposal for a trap-door one-way function. The new proposal belongs to the "multivariate quadratic" family but the trap-door is different from existing methods, and is simpler
    corecore