1,100 research outputs found

    Muckle+: End-to-End Hybrid Authenticated Key Exchanges

    Get PDF
    End-to-end authenticity in public networks plays a significant role. Namely, without authenticity, the adversary might be able to retrieve even confidential information straight away by impersonating others. Proposed solutions to establish an authenticated channel cover pre-shared key-based, password-based, and certificate-based techniques. To add confidentiality to an authenticated channel, authenticated key exchange (AKE) protocols usually have one of the three solutions built in. As an amplification, hybrid AKE (HAKE) approaches are getting more popular nowadays and were presented in several flavors to incorporate classical, post-quantum, or quantum-key-distribution components. The main benefit is redundancy, i.e., if some of the components fail, the primitive still yields a confidential and authenticated channel. However, current HAKE instantiations either rely on pre-shared keys (which yields inefficient end-to-end authenticity) or only support one or two of the three above components (resulting in reduced redundancy and flexibility). In this work, we present an extension of a modular HAKE framework due to Dowling, Brandt Hansen, and Paterson (PQCrypto\u2720) that does not suffer from the above constraints. While their instantiation, dubbed Muckle, requires pre-shared keys (and hence yields inefficient end-to-end authenticity), our extended instantiation called Muckle+ utilizes post-quantum digital signatures. While replacing pre-shared keys with digital signatures is rather straightforward in general, this turned out to be surprisingly non-trivial when applied to HAKE frameworks (resulting in a significant model change with adapted proof techniques)

    Energy efficient mining on a quantum-enabled blockchain using light

    Full text link
    We outline a quantum-enabled blockchain architecture based on a consortium of quantum servers. The network is hybridised, utilising digital systems for sharing and processing classical information combined with a fibre--optic infrastructure and quantum devices for transmitting and processing quantum information. We deliver an energy efficient interactive mining protocol enacted between clients and servers which uses quantum information encoded in light and removes the need for trust in network infrastructure. Instead, clients on the network need only trust the transparent network code, and that their devices adhere to the rules of quantum physics. To demonstrate the energy efficiency of the mining protocol, we elaborate upon the results of two previous experiments (one performed over 1km of optical fibre) as applied to this work. Finally, we address some key vulnerabilities, explore open questions, and observe forward--compatibility with the quantum internet and quantum computing technologies.Comment: 25 pages, 5 figure

    Post-processing procedure for industrial quantum key distribution systems

    Full text link
    We present algorithmic solutions aimed on post-processing for industrial quantum key distribution systems with hardware sifting. The main steps of the procedure are error correction, parameter estimation, and privacy amplification. Authentication of a classical public communication channel is also considered.Comment: 5 pages; presented at the 3rd International School and Conference "Saint-Petersburg OPEN 2016" (Saint-Petersburg, March 28-30, 2016
    • …
    corecore