7,276 research outputs found

    Quantum key distribution without alternative measurements and rotations

    Full text link
    A quantum key distribution protocol based on entanglement swapping is proposed. Through choosing particles by twos from the sequence and performing Bell measurements, two communicators can detect eavesdropping and obtain the secure key. Because the two particles measured together are selected out randomly, we need neither alternative measurements nor rotations of the Bell states to obtain security.Comment: 11 pages, no figures, a modified version of quant-ph/0412014, add a security proof and delete the identification par

    Trade-offs in multi-party Bell inequality violations in qubit networks

    Full text link
    Two overlapping bipartite binary input Bell inequalities cannot be simultaneously violated as this would contradict the usual no-signalling principle. This property is known as monogamy of Bell inequality violations and generally Bell monogamy relations refer to trade-offs between simultaneous violations of multiple inequalities. It turns out that multipartite Bell inequalities admit weaker forms of monogamies that allow for violations of a few inequalities at once. Here we systematically study monogamy relations between correlation Bell inequalities both within quantum theory and under the sole assumption of no signalling. We first investigate the trade-offs in Bell violations arising from the uncertainty relation for complementary binary observables, and exhibit several network configurations in which a tight trade-off arises in this fashion. We then derive a tight trade-off relation which cannot be obtained from the uncertainty relation showing that it does not capture monogamy entirely. The results are extended to Bell inequalities involving different number of parties and find applications in device-independent secret sharing and device-independent randomness extraction. Although two multipartite Bell inequalities may be violated simultaneously, we show that genuine multi-party non-locality, as evidenced by a generalised Svetlichny inequality, does exhibit monogamy property. Finally, using the relations derived we reveal the existence of flat regions in the set of quantum correlations.Comment: 15 pages, 5 figure

    Quantum Information Theory of Entanglement and Measurement

    Full text link
    We present a quantum information theory that allows for a consistent description of entanglement. It parallels classical (Shannon) information theory but is based entirely on density matrices (rather than probability distributions) for the description of quantum ensembles. We find that quantum conditional entropies can be negative for entangled systems, which leads to a violation of well-known bounds in Shannon information theory. Such a unified information-theoretic description of classical correlation and quantum entanglement clarifies the link between them: the latter can be viewed as ``super-correlation'' which can induce classical correlation when considering a tripartite or larger system. Furthermore, negative entropy and the associated clarification of entanglement paves the way to a natural information-theoretic description of the measurement process. This model, while unitary and causal, implies the well-known probabilistic results of conventional quantum mechanics. It also results in a simple interpretation of the Kholevo theorem limiting the accessible information in a quantum measurement.Comment: 26 pages with 6 figures. Expanded version of PhysComp'96 contributio

    Quantum Key Distribution Simulation using Entangled Bell States

    Get PDF
    To communicate information securely, the sender and recipient of the information need to have a shared, secret key. Quantum key distribution (QKD) is a proposed method for this and takes advantage of the laws of quantum mechanics. The users, Alice and Bob, exchange quantum information in the form of entangled qubits over a quantum channel as well as exchanging measurement information over a classical channel. A successful QKD algorithm will ensure that when an eavesdropper has access to both the quantum and classical information channels, they cannot deduce the key, and they will be detected by the key generators. This paper will introduce quantum key distribution and explain the implemented simulation of a proposed QKD algorithm using entangled Bell states. The proposed T22 protocol was compared against the more common BB84 QKD protocol. The results show that it takes 3x longer to generate a key of length m bits using the T22 protocol, however the T22 protocol is 36x more secure than BB84

    Measurement entropy in Generalized Non-Signalling Theory cannot detect bipartite non-locality

    Full text link
    We consider entropy in Generalized Non-Signalling Theory (also known as box world) where the most common definition of entropy is the measurement entropy. In this setting, we completely characterize the set of allowed entropies for a bipartite state. We find that the only inequalities amongst these entropies are subadditivity and non-negativity. What is surprising is that non-locality does not play a role - in fact any bipartite entropy vector can be achieved by separable states of the theory. This is in stark contrast to the case of the von Neumann entropy in quantum theory, where only entangled states satisfy S(AB)<S(A).Comment: 14 pages, includes minor corrections from v

    Generic Security Proof of Quantum Key Exchange using Squeezed States

    Full text link
    Recently, a Quantum Key Exchange protocol that uses squeezed states was presented by Gottesman and Preskill. In this paper we give a generic security proof for this protocol. The method used for this generic security proof is based on recent work by Christiandl, Renner and Ekert.Comment: 5 pages, 7 figures, accepted at IEEE ISIT 200
    corecore