157,169 research outputs found

    Generalized binomial state: Nonclassical features observed through various witnesses and a measure of nonclassicality

    Full text link
    Experimental realization of various quantum states of interest has become possible in the recent past due to the rapid developments in the field of quantum state engineering. Nonclassical properties of such states have led to various exciting applications, specifically in the area of quantum information processing. The present article aims to study lower- and higher-order nonclassical features of such an engineered quantum state (a generalized binomial state based on Abel's formula). Present study has revealed that the state studied here is highly nonclassical. Specifically, higher-order nonclassical properties of this state are reported using a set of witnesses, like higher-order antibunching, higher-order sub-Poissonian photon statistics, higher-order squeezing (both Hong Mandel type and Hillery type). A set of other witnesses for lower- and higher-order nonclassicality (e.g., Vogel's criterion and Agarwal's A parameter) have also been explored. Further, an analytic expression for the Wigner function of the generalized binomial state is reported and the same is used to witness nonclassicality and to quantify the amount of nonclassicality present in the system by computing the nonclassical volume (volume of the negative part of the Wigner function). Optical tomogram of the generalized binomial state is also computed for various conditions as Wigner function cannot be measured directly in an experiment in general, but the same can be obtained from the optical tomogram with the help of Radon transform.Comment: 18 pages, 26 figure

    Quantum Information Processing and Relativistic Quantum Fields

    Full text link
    It is shown that an ideal measurement of a one-particle wave packet state of a relativistic quantum field in Minkowski spacetime enables superluminal signalling. The result holds for a measurement that takes place over an intervention region in spacetime whose extent in time in some frame is longer than the light-crossing time of the packet in that frame. Moreover, these results are shown to apply not only to ideal measurements but also to unitary transformations that rotate two orthogonal one-particle states into each other. In light of these observations, possible restrictions on the allowed types of intervention are considered. A more physical approach to such questions is to construct explicit models of the interventions as interactions between the field and other quantum systems such as detectors. The prototypical Unruh-DeWitt detector couples to the field operator itself and so most likely respects relativistic causality. On the other hand, detector models which couple to a finite set of frequencies of field modes are shown to lead to superluminal signalling. Such detectors do, however, provide successful phenomenological models of atom-qubits interacting with quantum fields in a cavity but are valid only on time scales many orders of magnitude larger than the light-crossing time of the cavity.Comment: 16 pages, 2 figures. Improved abstract and discussion of 'ideal' measurements. References to previous work adde

    Computational capacity of the universe

    Full text link
    Merely by existing, all physical systems register information. And by evolving dynamically in time, they transform and process that information. The laws of physics determine the amount of information that a physical system can register (number of bits) and the number of elementary logic operations that a system can perform (number of ops). The universe is a physical system. This paper quantifies the amount of information that the universe can register and the number of elementary operations that it can have performed over its history. The universe can have performed no more than 1012010^{120} ops on 109010^{90} bits.Comment: 17 pages, TeX. submitted to Natur

    Quantum cryptography: key distribution and beyond

    Full text link
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Comment: It's a review on quantum cryptography and it is not restricted to QK

    Information, information processing and gravity

    Full text link
    I discuss fundamental limits placed on information and information processing by gravity. Such limits arise because both information and its processing require energy, while gravitational collapse (formation of a horizon or black hole) restricts the amount of energy allowed in a finite region. Specifically, I use a criterion for gravitational collapse called the hoop conjecture. Once the hoop conjecture is assumed a number of results can be obtained directly: the existence of a fundamental uncertainty in spatial distance of order the Planck length, bounds on information (entropy) in a finite region, and a bound on the rate of information processing in a finite region. In the final section I discuss some cosmological issues related to the total amount of information in the universe, and note that almost all detailed aspects of the late universe are determined by the randomness of quantum outcomes. This paper is based on a talk presented at a 2007 Bellairs Research Institute (McGill University) workshop on black holes and quantum information.Comment: 7 pages, 5 figures, revte
    • …
    corecore