1,412 research outputs found

    Correlated photon dynamics in dissipative Rydberg media

    Full text link
    Rydberg blockade physics in optically dense atomic media under the conditions of electromagnetically induced transparency (EIT) leads to strong dissipative interactions between single photons. We introduce a new approach to analyzing this challenging many-body problem in the limit of large optical depth per blockade radius. In our approach, we separate the single-polariton EIT physics from Rydberg-Rydberg interactions in a serialized manner while using a hard-sphere model for the latter, thus capturing the dualistic particle-wave nature of light as it manifests itself in dissipative Rydberg-EIT media. Using this approach, we analyze the saturation behavior of the transmission through one-dimensional Rydberg-EIT media in the regime of non-perturbative dissipative interactions relevant to current experiments. Our model is able to capture the many-body dynamics of bright, coherent pulses through these strongly interacting media. We compare our model with available experimental data in this regime and find good agreement. We also analyze a scheme for generating regular trains of single photons from continuous-wave input and derive its scaling behavior in the presence of imperfect single-photon EIT.Comment: Final version. 6 pages, 4 figures (+ Supplemental Material; 7 pages, 3 figures

    Digital Quantum Simulation with Rydberg Atoms

    Full text link
    We discuss in detail the implementation of an open-system quantum simulator with Rydberg states of neutral atoms held in an optical lattice. Our scheme allows one to realize both coherent as well as dissipative dynamics of complex spin models involving many-body interactions and constraints. The central building block of the simulation scheme is constituted by a mesoscopic Rydberg gate that permits the entanglement of several atoms in an efficient, robust and quick protocol. In addition, optical pumping on ancillary atoms provides the dissipative ingredient for engineering the coupling between the system and a tailored environment. As an illustration, we discuss how the simulator enables the simulation of coherent evolution of quantum spin models such as the two-dimensional Heisenberg model and Kitaev's toric code, which involves four-body spin interactions. We moreover show that in principle also the simulation of lattice fermions can be achieved. As an example for controlled dissipative dynamics, we discuss ground state cooling of frustration-free spin Hamiltonians.Comment: submitted to special issue "Quantum Information with Neutral Particles" of "Quantum Information Processing

    Many-body Rabi oscillations of Rydberg excitation in small mesoscopic samples

    Full text link
    We investigate the collective aspects of Rydberg excitation in ultracold mesoscopic systems. Strong interactions between Rydberg atoms influence the excitation process and impose correlations between excited atoms. The manifestations of the collective behavior of Rydberg excitation are the many-body Rabi oscillations, spatial correlations between atoms as well as the fluctuations of the number of excited atoms. We study these phenomena in detail by numerically solving the many-body Schr\"edinger equation.Comment: 8 pages, 5 figure

    Towards quantum simulation with circular Rydberg atoms

    Full text link
    The main objective of quantum simulation is an in-depth understanding of many-body physics. It is important for fundamental issues (quantum phase transitions, transport, . . . ) and for the development of innovative materials. Analytic approaches to many-body systems are limited and the huge size of their Hilbert space makes numerical simulations on classical computers intractable. A quantum simulator avoids these limitations by transcribing the system of interest into another, with the same dynamics but with interaction parameters under control and with experimental access to all relevant observables. Quantum simulation of spin systems is being explored with trapped ions, neutral atoms and superconducting devices. We propose here a new paradigm for quantum simulation of spin-1/2 arrays providing unprecedented flexibility and allowing one to explore domains beyond the reach of other platforms. It is based on laser-trapped circular Rydberg atoms. Their long intrinsic lifetimes combined with the inhibition of their microwave spontaneous emission and their low sensitivity to collisions and photoionization make trapping lifetimes in the minute range realistic with state-of-the-art techniques. Ultra-cold defect-free circular atom chains can be prepared by a variant of the evaporative cooling method. This method also leads to the individual detection of arbitrary spin observables. The proposed simulator realizes an XXZ spin-1/2 Hamiltonian with nearest-neighbor couplings ranging from a few to tens of kHz. All the model parameters can be tuned at will, making a large range of simulations accessible. The system evolution can be followed over times in the range of seconds, long enough to be relevant for ground-state adiabatic preparation and for the study of thermalization, disorder or Floquet time crystals. This platform presents unrivaled features for quantum simulation
    corecore