16,605 research outputs found

    Quantum Algorithms Revisited

    Get PDF
    Quantum computers use the quantum interference of different computational paths to enhance correct outcomes and suppress erroneous outcomes of computations. A common pattern underpinning quantum algorithms can be identified when quantum computation is viewed as multi-particle interference. We use this approach to review (and improve) some of the existing quantum algorithms and to show how they are related to different instances of quantum phase estimation. We provide an explicit algorithm for generating any prescribed interference pattern with an arbitrary precision.Comment: 18 pages, LaTeX, 7 figures. Submitted to Proc. Roy. Soc. Lond.

    A Laplace transform approach to the quantum harmonic oscillator

    Full text link
    The one-dimensional quantum harmonic oscillator problem is examined via the Laplace transform method. The stationary states are determined by requiring definite parity and good behaviour of the eigenfunction at the origin and at infinity

    The Cerenkov effect revisited: from swimming ducks to zero modes in gravitational analogs

    Full text link
    We present an interdisciplinary review of the generalized Cerenkov emission of radiation from uniformly moving sources in the different contexts of classical electromagnetism, superfluid hydrodynamics, and classical hydrodynamics. The details of each specific physical systems enter our theory via the dispersion law of the excitations. A geometrical recipe to obtain the emission patterns in both real and wavevector space from the geometrical shape of the dispersion law is discussed and applied to a number of cases of current experimental interest. Some consequences of these emission processes onto the stability of condensed-matter analogs of gravitational systems are finally illustrated.Comment: Lecture Notes at the IX SIGRAV School on "Analogue Gravity" in Como, Italy from May 16th-21th, 201

    The scar mechanism revisited

    Full text link
    Unstable periodic orbits are known to originate scars on some eigenfunctions of classically chaotic systems through recurrences causing that some part of an initial distribution of quantum probability in its vicinity returns periodically close to the initial point. In the energy domain, these recurrences are seen to accumulate quantum density along the orbit by a constructive interference mechanism when the appropriate quantization (on the action of the scarring orbit) is fulfilled. Other quantized phase space circuits, such as those defined by homoclinic tori, are also important in the coherent transport of quantum density in chaotic systems. The relationship of this secondary quantum transport mechanism with the standard mechanism for scarring is here discussed and analyzed.Comment: 6 pages, 6 figure

    Noncommutative Harmonic Analysis, Sampling Theory and the Duflo Map in 2+1 Quantum Gravity

    Full text link
    We show that the ⋆\star-product for U(su2)U(su_2), group Fourier transform and effective action arising in [1] in an effective theory for the integer spin Ponzano-Regge quantum gravity model are compatible with the noncommutative bicovariant differential calculus, quantum group Fourier transform and noncommutative scalar field theory previously proposed for 2+1 Euclidean quantum gravity using quantum group methods in [2]. The two are related by a classicalisation map which we introduce. We show, however, that noncommutative spacetime has a richer structure which already sees the half-integer spin information. We argue that the anomalous extra `time' dimension seen in the noncommutative geometry should be viewed as the renormalisation group flow visible in the coarse-graining in going from SU2SU_2 to SO3SO_3. Combining our methods we develop practical tools for noncommutative harmonic analysis for the model including radial quantum delta-functions and Gaussians, the Duflo map and elements of `noncommutative sampling theory'. This allows us to understand the bandwidth limitation in 2+1 quantum gravity arising from the bounded SU2SU_2 momentum and to interpret the Duflo map as noncommutative compression. Our methods also provide a generalised twist operator for the ⋆\star-product.Comment: 53 pages latex, no figures; extended the intro for this final versio
    • …
    corecore