16,253 research outputs found

    Quantum Entanglement and Communication Complexity

    Get PDF
    We consider a variation of the multi-party communication complexity scenario where the parties are supplied with an extra resource: particles in an entangled quantum state. We show that, although a prior quantum entanglement cannot be used to simulate a communication channel, it can reduce the communication complexity of functions in some cases. Specifically, we show that, for a particular function among three parties (each of which possesses part of the function's input), a prior quantum entanglement enables them to learn the value of the function with only three bits of communication occurring among the parties, whereas, without quantum entanglement, four bits of communication are necessary. We also show that, for a particular two-party probabilistic communication complexity problem, quantum entanglement results in less communication than is required with only classical random correlations (instead of quantum entanglement). These results are a noteworthy contrast to the well-known fact that quantum entanglement cannot be used to actually simulate communication among remote parties.Comment: 10 pages, latex, no figure

    Communication Complexity Lower Bounds by Polynomials

    Full text link
    The quantum version of communication complexity allows the two communicating parties to exchange qubits and/or to make use of prior entanglement (shared EPR-pairs). Some lower bound techniques are available for qubit communication complexity, but except for the inner product function, no bounds are known for the model with unlimited prior entanglement. We show that the log-rank lower bound extends to the strongest model (qubit communication + unlimited prior entanglement). By relating the rank of the communication matrix to properties of polynomials, we are able to derive some strong bounds for exact protocols. In particular, we prove both the "log-rank conjecture" and the polynomial equivalence of quantum and classical communication complexity for various classes of functions. We also derive some weaker bounds for bounded-error quantum protocols.Comment: 16 pages LaTeX, no figures. 2nd version: rewritten and some results adde

    Gaussian Entanglement Distribution via Satellite

    Full text link
    In this work we analyse three quantum communication schemes for the generation of Gaussian entanglement between two ground stations. Communication occurs via a satellite over two independent atmospheric fading channels dominated by turbulence-induced beam wander. In our first scheme the engineering complexity remains largely on the ground transceivers, with the satellite acting simply as a reflector. Although the channel state information of the two atmospheric channels remains unknown in this scheme, the Gaussian entanglement generation between the ground stations can still be determined. On the ground, distillation and Gaussification procedures can be applied, leading to a refined Gaussian entanglement generation rate between the ground stations. We compare the rates produced by this first scheme with two competing schemes in which quantum complexity is added to the satellite, thereby illustrating the trade-off between space-based engineering complexity and the rate of ground-station entanglement generation.Comment: Closer to published version (to appear in Phys. Rev. A) 13 pages, 6 figure

    From communication complexity to an entanglement spread area law in the ground state of gapped local Hamiltonians

    Full text link
    In this work, we make a connection between two seemingly different problems. The first problem involves characterizing the properties of entanglement in the ground state of gapped local Hamiltonians, which is a central topic in quantum many-body physics. The second problem is on the quantum communication complexity of testing bipartite states with EPR assistance, a well-known question in quantum information theory. We construct a communication protocol for testing (or measuring) the ground state and use its communication complexity to reveal a new structural property for the ground state entanglement. This property, known as the entanglement spread, roughly measures the ratio between the largest and the smallest Schmidt coefficients across a cut in the ground state. Our main result shows that gapped ground states possess limited entanglement spread across any cut, exhibiting an "area law" behavior. Our result quite generally applies to any interaction graph with an improved bound for the special case of lattices. This entanglement spread area law includes interaction graphs constructed in [Aharonov et al., FOCS'14] that violate a generalized area law for the entanglement entropy. Our construction also provides evidence for a conjecture in physics by Li and Haldane on the entanglement spectrum of lattice Hamiltonians [Li and Haldane, PRL'08]. On the technical side, we use recent advances in Hamiltonian simulation algorithms along with quantum phase estimation to give a new construction for an approximate ground space projector (AGSP) over arbitrary interaction graphs.Comment: 29 pages, 1 figur

    Quantum entanglement and communication complexity

    Get PDF
    • …
    corecore