1,478 research outputs found

    Bragg reflection waveguide as a source of wavelength-multiplexed polarization-entangled photon pairs

    Full text link
    We put forward a new highly efficient source of paired photons entangled in polarization with an ultra-large bandwidth. The photons are generated by means of a conveniently designed spontaneous parametric down-conversion process in a semiconductor type-II Bragg reflection waveguide. The proposed scheme aims at being a key element of an integrated source of polarization-entangled photon pairs highly suitable for its use in a multi-user quantum-key-distribution system

    Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs

    Full text link
    We present two realistic entanglement concentration protocols (ECPs) for pure partially entangled photons. A partially entangled photon pair can be concentrated to a maximally entangled pair with only an ancillary single photon in a certain probability, while the conventional ones require two copies of partially entangled pairs at least. Our first protocol is implemented with linear optics and the second one is implemented with cross-Kerr nonlinearities. Compared with other ECPs, they do not need to know the accurate coefficients of the initial state. With linear optics, it is feasible with current experiment. With cross-Kerr nonlinearities, it does not require the sophisticated single-photon detectors and can be repeated to get a higher success probability. Moreover, the second protocol can get the higher entanglement transformation efficiency and it maybe the most economical one by far. Meanwhile, both of protocols are more suitable for multi-photon system concentration, because they need less operations and classical communications. All these advantages make two protocols be useful in current long-distance quantum communications

    Orbital angular momentum of photons and the entanglement of Laguerre-Gaussian modes

    Full text link
    The identification of orbital angular momentum (OAM) as a fundamental property of a beam of light nearly twenty-five years ago has led to an extensive body of research around this topic. The possibility that single photons can carry OAM has made this degree of freedom an ideal candidate for the investigation of complex quantum phenomena and their applications. Research in this direction has ranged from experiments on complex forms of quantum entanglement to the interaction between light and quantum states of matter. Furthermore, the use of OAM in quantum information has generated a lot of excitement, as it allows for encoding large amounts of information on a single photon. Here we explain the intuition that led to the first quantum experiment with OAM fifteen years ago. We continue by reviewing some key experiments investigating fundamental questions on photonic OAM and the first steps into applying these properties in novel quantum protocols. In the end, we identify several interesting open questions that could form the subject of future investigations with OAM.Comment: 17 pages, 7 figures; close to accepted versio
    • …
    corecore