7,565 research outputs found

    Quantum enhancement of randomness distribution

    Get PDF
    The capability of a given channel to transmit information is, a priori, distinct from its capability to distribute random correlations. Despite that, for classical channels, the capacity to distribute information and randomness turns out to be the same, even with the assistance of auxiliary communication. In this work we show that this is no longer true for quantum channels when feedback is allowed. We prove this by constructing a channel that is noisy for the transmission of information but behaves as a virtual noiseless channel for randomness distribution when assisted by feedback communication. Our result can be seen as a way of unlocking quantum randomness internal to the channel

    Integer quantum Hall transition in the presence of a long-range-correlated quenched disorder

    Full text link
    We theoretically study the effect of long-ranged inhomogeneities on the critical properties of the integer quantum Hall transition. For this purpose we employ the real-space renormalization-group (RG) approach to the network model of the transition. We start by testing the accuracy of the RG approach in the absence of inhomogeneities, and infer the correlation length exponent nu=2.39 from a broad conductance distribution. We then incorporate macroscopic inhomogeneities into the RG procedure. Inhomogeneities are modeled by a smooth random potential with a correlator which falls off with distance as a power law, r^{-alpha}. Similar to the classical percolation, we observe an enhancement of nu with decreasing alpha. Although the attainable system sizes are large, they do not allow one to unambiguously identify a cusp in the nu(alpha) dependence at alpha_c=2/nu, as might be expected from the extended Harris criterion. We argue that the fundamental obstacle for the numerical detection of a cusp in the quantum percolation is the implicit randomness in the Aharonov-Bohm phases of the wave functions. This randomness emulates the presence of a short-range disorder alongside the smooth potential.Comment: 10 pages including 6 figures, revised version as accepted for publication in PR

    Collapse of Charge Gap in Random Mott Insulators

    Full text link
    Effects of randomness on interacting fermionic systems in one dimension are investigated by quantum Monte-Carlo techniques. At first, interacting spinless fermions are studied whose ground state shows charge ordering. Quantum phase transition due to randomness is observed associated with the collapse of the charge ordering. We also treat random Hubbard model focusing on the Mott gap. Although the randomness closes the Mott gap and low-lying states are created, which is observed in the charge compressibility, no (quasi-) Fermi surface singularity is formed. It implies localized nature of the low-lying states.Comment: RevTeX with 3 postscript figure

    Competition between Kondo and RKKY correlations in the presence of strong randomness

    Full text link
    We propose that competition between Kondo and magnetic correlations results in a novel universality class for heavy fermion quantum criticality in the presence of strong randomness. Starting from an Anderson lattice model with disorder, we derive an effective local field theory in the dynamical mean-field theory (DMFT) approximation, where randomness is introduced into both hybridization and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions. Performing the saddle-point analysis in the U(1) slave-boson representation, we reveal its phase diagram which shows a quantum phase transition from a spin liquid state to a local Fermi liquid phase. In contrast with the clean limit of the Anderson lattice model, the effective hybridization given by holon condensation turns out to vanish, resulting from the zero mean value of the hybridization coupling constant. However, we show that the holon density becomes finite when variance of hybridization is sufficiently larger than that of the RKKY coupling, giving rise to the Kondo effect. On the other hand, when the variance of hybridization becomes smaller than that of the RKKY coupling, the Kondo effect disappears, resulting in a fully symmetric paramagnetic state, adiabatically connected with the spin liquid state of the disordered Heisenberg model. .....

    Enhancing quantum entropy in vacuum-based quantum random number generator

    Full text link
    Information-theoretically provable unique true random numbers, which cannot be correlated or controlled by an attacker, can be generated based on quantum measurement of vacuum state and universal-hashing randomness extraction. Quantum entropy in the measurements decides the quality and security of the random number generator. At the same time, it directly determine the extraction ratio of true randomness from the raw data, in other words, it affects quantum random numbers generating rate obviously. In this work, considering the effects of classical noise, the best way to enhance quantum entropy in the vacuum-based quantum random number generator is explored in the optimum dynamical analog-digital converter (ADC) range scenario. The influence of classical noise excursion, which may be intrinsic to a system or deliberately induced by an eavesdropper, on the quantum entropy is derived. We propose enhancing local oscillator intensity rather than electrical gain for noise-independent amplification of quadrature fluctuation of vacuum state. Abundant quantum entropy is extractable from the raw data even when classical noise excursion is large. Experimentally, an extraction ratio of true randomness of 85.3% is achieved by finite enhancement of the local oscillator power when classical noise excursions of the raw data is obvious.Comment: 12 pages,8 figure

    Numerical Study of a Two-Dimensional Quantum Antiferromagnet with Random Ferromagnetic Bonds

    Full text link
    A Monte Carlo method for finite-temperature studies of the two-dimensional quantum Heisenberg antiferromagnet with random ferromagnetic bonds is presented. The scheme is based on an approximation which allows for an analytic summation over the realizations of the randomness, thereby significantly alleviating the ``sign problem'' for this frustrated spin system. The approximation is shown to be very accurate for ferromagnetic bond concentrations of up to ten percent. The effects of a low concentration of ferromagnetic bonds on the antiferromagnetism are discussed.Comment: 11 pages + 5 postscript figures (included), Revtex 3.0, UCSBTH-94-2

    Highly-symmetric random one-dimensional spin models

    Get PDF
    The interplay of disorder and interactions is a challenging topic of condensed matter physics, where correlations are crucial and exotic phases develop. In one spatial dimension, a particularly successful method to analyze such problems is the strong-disorder renormalization group (SDRG). This method, which is asymptotically exact in the limit of large disorder, has been successfully employed in the study of several phases of random magnetic chains. Here we develop an SDRG scheme capable to provide in-depth information on a large class of strongly disordered one-dimensional magnetic chains with a global invariance under a generic continuous group. Our methodology can be applied to any Lie-algebra valued spin Hamiltonian, in any representation. As examples, we focus on the physically relevant cases of SO(N) and Sp(N) magnetism, showing the existence of different randomness-dominated phases. These phases display emergent SU(N) symmetry at low energies and fall in two distinct classes, with meson-like or baryon-like characteristics. Our methodology is here explained in detail and helps to shed light on a general mechanism for symmetry emergence in disordered systems.Comment: 26 pages, 12 figure
    • …
    corecore