656 research outputs found

    Cryptography from tensor problems

    Get PDF
    We describe a new proposal for a trap-door one-way function. The new proposal belongs to the "multivariate quadratic" family but the trap-door is different from existing methods, and is simpler

    New Developments in Quantum Algorithms

    Full text link
    In this survey, we describe two recent developments in quantum algorithms. The first new development is a quantum algorithm for evaluating a Boolean formula consisting of AND and OR gates of size N in time O(\sqrt{N}). This provides quantum speedups for any problem that can be expressed via Boolean formulas. This result can be also extended to span problems, a generalization of Boolean formulas. This provides an optimal quantum algorithm for any Boolean function in the black-box query model. The second new development is a quantum algorithm for solving systems of linear equations. In contrast with traditional algorithms that run in time O(N^{2.37...}) where N is the size of the system, the quantum algorithm runs in time O(\log^c N). It outputs a quantum state describing the solution of the system.Comment: 11 pages, 1 figure, to appear as an invited survey talk at MFCS'201

    Systematization of a 256-bit lightweight block cipher Marvin

    Get PDF
    In a world heavily loaded by information, there is a great need for keeping specific information secure from adversaries. The rapid growth in the research field of lightweight cryptography can be seen from the list of the number of lightweight stream as well as block ciphers that has been proposed in the recent years. This paper focuses only on the subject of lightweight block ciphers. In this paper, we have proposed a new 256 bit lightweight block cipher named as Marvin, that belongs to the family of Extended LS designs.Comment: 12 pages,6 figure

    Weak Fourier-Schur sampling, the hidden subgroup problem, and the quantum collision problem

    Get PDF
    Schur duality decomposes many copies of a quantum state into subspaces labeled by partitions, a decomposition with applications throughout quantum information theory. Here we consider applying Schur duality to the problem of distinguishing coset states in the standard approach to the hidden subgroup problem. We observe that simply measuring the partition (a procedure we call weak Schur sampling) provides very little information about the hidden subgroup. Furthermore, we show that under quite general assumptions, even a combination of weak Fourier sampling and weak Schur sampling fails to identify the hidden subgroup. We also prove tight bounds on how many coset states are required to solve the hidden subgroup problem by weak Schur sampling, and we relate this question to a quantum version of the collision problem.Comment: 21 page

    Sharp Quantum vs. Classical Query Complexity Separations

    Full text link
    We obtain the strongest separation between quantum and classical query complexity known to date -- specifically, we define a black-box problem that requires exponentially many queries in the classical bounded-error case, but can be solved exactly in the quantum case with a single query (and a polynomial number of auxiliary operations). The problem is simple to define and the quantum algorithm solving it is also simple when described in terms of certain quantum Fourier transforms (QFTs) that have natural properties with respect to the algebraic structures of finite fields. These QFTs may be of independent interest, and we also investigate generalizations of them to noncommutative finite rings.Comment: 13 pages, change in title, improvements in presentation, and minor corrections. To appear in Algorithmic
    • …
    corecore