2,195 research outputs found

    Quantum Convolutional Error Correction Codes

    Full text link
    I report two general methods to construct quantum convolutional codes for quantum registers with internal NN states. Using one of these methods, I construct a quantum convolutional code of rate 1/4 which is able to correct one general quantum error for every eight consecutive quantum registers.Comment: To be reported in the 1st NASA Conf. on Quantum Comp., uses llncs.sty, 12 page

    Convolutional and tail-biting quantum error-correcting codes

    Full text link
    Rate-(n-2)/n unrestricted and CSS-type quantum convolutional codes with up to 4096 states and minimum distances up to 10 are constructed as stabilizer codes from classical self-orthogonal rate-1/n F_4-linear and binary linear convolutional codes, respectively. These codes generally have higher rate and less decoding complexity than comparable quantum block codes or previous quantum convolutional codes. Rate-(n-2)/n block stabilizer codes with the same rate and error-correction capability and essentially the same decoding algorithms are derived from these convolutional codes via tail-biting.Comment: 30 pages. Submitted to IEEE Transactions on Information Theory. Minor revisions after first round of review

    Description of a quantum convolutional code

    Full text link
    We describe a quantum error correction scheme aimed at protecting a flow of quantum information over long distance communication. It is largely inspired by the theory of classical convolutional codes which are used in similar circumstances in classical communication. The particular example shown here uses the stabilizer formalism, which provides an explicit encoding circuit. An associated error estimation algorithm is given explicitly and shown to provide the most likely error over any memoryless quantum channel, while its complexity grows only linearly with the number of encoded qubits.Comment: 4 pages, uses revtex4. Minor correction in the encoding and decoding circuit

    Quantum Coding with Entanglement

    Full text link
    Quantum error-correcting codes will be the ultimate enabler of a future quantum computing or quantum communication device. This theory forms the cornerstone of practical quantum information theory. We provide several contributions to the theory of quantum error correction--mainly to the theory of "entanglement-assisted" quantum error correction where the sender and receiver share entanglement in the form of entangled bits (ebits) before quantum communication begins. Our first contribution is an algorithm for encoding and decoding an entanglement-assisted quantum block code. We then give several formulas that determine the optimal number of ebits for an entanglement-assisted code. The major contribution of this thesis is the development of the theory of entanglement-assisted quantum convolutional coding. A convolutional code is one that has memory and acts on an incoming stream of qubits. We explicitly show how to encode and decode a stream of information qubits with the help of ancilla qubits and ebits. Our entanglement-assisted convolutional codes include those with a Calderbank-Shor-Steane structure and those with a more general structure. We then formulate convolutional protocols that correct errors in noisy entanglement. Our final contribution is a unification of the theory of quantum error correction--these unified convolutional codes exploit all of the known resources for quantum redundancy.Comment: Ph.D. Thesis, University of Southern California, 2008, 193 pages, 2 tables, 12 figures, 9 limericks; Available at http://digitallibrary.usc.edu/search/controller/view/usctheses-m1491.htm

    Minimal-memory realization of pearl-necklace encoders of general quantum convolutional codes

    Full text link
    Quantum convolutional codes, like their classical counterparts, promise to offer higher error correction performance than block codes of equivalent encoding complexity, and are expected to find important applications in reliable quantum communication where a continuous stream of qubits is transmitted. Grassl and Roetteler devised an algorithm to encode a quantum convolutional code with a "pearl-necklace encoder." Despite their theoretical significance as a neat way of representing quantum convolutional codes, they are not well-suited to practical realization. In fact, there is no straightforward way to implement any given pearl-necklace structure. This paper closes the gap between theoretical representation and practical implementation. In our previous work, we presented an efficient algorithm for finding a minimal-memory realization of a pearl-necklace encoder for Calderbank-Shor-Steane (CSS) convolutional codes. This work extends our previous work and presents an algorithm for turning a pearl-necklace encoder for a general (non-CSS) quantum convolutional code into a realizable quantum convolutional encoder. We show that a minimal-memory realization depends on the commutativity relations between the gate strings in the pearl-necklace encoder. We find a realization by means of a weighted graph which details the non-commutative paths through the pearl-necklace. The weight of the longest path in this graph is equal to the minimal amount of memory needed to implement the encoder. The algorithm has a polynomial-time complexity in the number of gate strings in the pearl-necklace encoder.Comment: 16 pages, 5 figures; extends paper arXiv:1004.5179v

    Good Quantum Convolutional Error Correction Codes And Their Decoding Algorithm Exist

    Get PDF
    Quantum convolutional code was introduced recently as an alternative way to protect vital quantum information. To complete the analysis of quantum convolutional code, I report a way to decode certain quantum convolutional codes based on the classical Viterbi decoding algorithm. This decoding algorithm is optimal for a memoryless channel. I also report three simple criteria to test if decoding errors in a quantum convolutional code will terminate after a finite number of decoding steps whenever the Hilbert space dimension of each quantum register is a prime power. Finally, I show that certain quantum convolutional codes are in fact stabilizer codes. And hence, these quantum stabilizer convolutional codes have fault-tolerant implementations.Comment: Minor changes, to appear in PR

    The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure

    Full text link
    Powerful Quantum Error Correction Codes (QECCs) are required for stabilizing and protecting fragile qubits against the undesirable effects of quantum decoherence. Similar to classical codes, hashing bound approaching QECCs may be designed by exploiting a concatenated code structure, which invokes iterative decoding. Therefore, in this paper we provide an extensive step-by-step tutorial for designing EXtrinsic Information Transfer (EXIT) chart aided concatenated quantum codes based on the underlying quantum-to-classical isomorphism. These design lessons are then exemplified in the context of our proposed Quantum Irregular Convolutional Code (QIRCC), which constitutes the outer component of a concatenated quantum code. The proposed QIRCC can be dynamically adapted to match any given inner code using EXIT charts, hence achieving a performance close to the hashing bound. It is demonstrated that our QIRCC-based optimized design is capable of operating within 0.4 dB of the noise limit
    • …
    corecore