774 research outputs found

    Parallel computing for brain simulation

    Get PDF
    [Abstract] Background: The human brain is the most complex system in the known universe, it is therefore one of the greatest mysteries. It provides human beings with extraordinary abilities. However, until now it has not been understood yet how and why most of these abilities are produced. Aims: For decades, researchers have been trying to make computers reproduce these abilities, focusing on both understanding the nervous system and, on processing data in a more efficient way than before. Their aim is to make computers process information similarly to the brain. Important technological developments and vast multidisciplinary projects have allowed creating the first simulation with a number of neurons similar to that of a human brain. Conclusion: This paper presents an up-to-date review about the main research projects that are trying to simulate and/or emulate the human brain. They employ different types of computational models using parallel computing: digital models, analog models and hybrid models. This review includes the current applications of these works, as well as future trends. It is focused on various works that look for advanced progress in Neuroscience and still others which seek new discoveries in Computer Science (neuromorphic hardware, machine learning techniques). Their most outstanding characteristics are summarized and the latest advances and future plans are presented. In addition, this review points out the importance of considering not only neurons: Computational models of the brain should also include glial cells, given the proven importance of astrocytes in information processing.Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; GRC2014/049Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; R2014/039Instituto de Salud Carlos III; PI13/0028

    The missing neurocognitive and artificial general intelligence bases of robocup reasearch: What still needs to be done before 2050?

    Get PDF
    Contains fulltext : 73427.pdf (preprint version ) (Open Access

    Second Generation General System Theory: Perspectives in Philosophy and Approaches in Complex Systems

    Get PDF
    Following the classical work of Norbert Wiener, Ross Ashby, Ludwig von Bertalanffy and many others, the concept of System has been elaborated in different disciplinary fields, allowing interdisciplinary approaches in areas such as Physics, Biology, Chemistry, Cognitive Science, Economics, Engineering, Social Sciences, Mathematics, Medicine, Artificial Intelligence, and Philosophy. The new challenge of Complexity and Emergence has made the concept of System even more relevant to the study of problems with high contextuality. This Special Issue focuses on the nature of new problems arising from the study and modelling of complexity, their eventual common aspects, properties and approaches—already partially considered by different disciplines—as well as focusing on new, possibly unitary, theoretical frameworks. This Special Issue aims to introduce fresh impetus into systems research when the possible detection and correction of mistakes require the development of new knowledge. This book contains contributions presenting new approaches and results, problems and proposals. The context is an interdisciplinary framework dealing, in order, with electronic engineering problems; the problem of the observer; transdisciplinarity; problems of organised complexity; theoretical incompleteness; design of digital systems in a user-centred way; reaction networks as a framework for systems modelling; emergence of a stable system in reaction networks; emergence at the fundamental systems level; behavioural realization of memoryless functions

    A Survey on Reservoir Computing and its Interdisciplinary Applications Beyond Traditional Machine Learning

    Full text link
    Reservoir computing (RC), first applied to temporal signal processing, is a recurrent neural network in which neurons are randomly connected. Once initialized, the connection strengths remain unchanged. Such a simple structure turns RC into a non-linear dynamical system that maps low-dimensional inputs into a high-dimensional space. The model's rich dynamics, linear separability, and memory capacity then enable a simple linear readout to generate adequate responses for various applications. RC spans areas far beyond machine learning, since it has been shown that the complex dynamics can be realized in various physical hardware implementations and biological devices. This yields greater flexibility and shorter computation time. Moreover, the neuronal responses triggered by the model's dynamics shed light on understanding brain mechanisms that also exploit similar dynamical processes. While the literature on RC is vast and fragmented, here we conduct a unified review of RC's recent developments from machine learning to physics, biology, and neuroscience. We first review the early RC models, and then survey the state-of-the-art models and their applications. We further introduce studies on modeling the brain's mechanisms by RC. Finally, we offer new perspectives on RC development, including reservoir design, coding frameworks unification, physical RC implementations, and interaction between RC, cognitive neuroscience and evolution.Comment: 51 pages, 19 figures, IEEE Acces

    Semiconductor Memory Devices for Hardware-Driven Neuromorphic Systems

    Get PDF
    This book aims to convey the most recent progress in hardware-driven neuromorphic systems based on semiconductor memory technologies. Machine learning systems and various types of artificial neural networks to realize the learning process have mainly focused on software technologies. Tremendous advances have been made, particularly in the area of data inference and recognition, in which humans have great superiority compared to conventional computers. In order to more effectively mimic our way of thinking in a further hardware sense, more synapse-like components in terms of integration density, completeness in realizing biological synaptic behaviors, and most importantly, energy-efficient operation capability, should be prepared. For higher resemblance with the biological nervous system, future developments ought to take power consumption into account and foster revolutions at the device level, which can be realized by memory technologies. This book consists of seven articles in which most recent research findings on neuromorphic systems are reported in the highlights of various memory devices and architectures. Synaptic devices and their behaviors, many-core neuromorphic platforms in close relation with memory, novel materials enabling the low-power synaptic operations based on memory devices are studied, along with evaluations and applications. Some of them can be practically realized due to high Si processing and structure compatibility with contemporary semiconductor memory technologies in production, which provides perspectives of neuromorphic chips for mass production

    Accelerating Pattern Recognition Algorithms On Parallel Computing Architectures

    Get PDF
    The move to more parallel computing architectures places more responsibility on the programmer to achieve greater performance. The programmer must now have a greater understanding of the underlying architecture and the inherent algorithmic parallelism. Using parallel computing architectures for exploiting algorithmic parallelism can be a complex task. This dissertation demonstrates various techniques for using parallel computing architectures to exploit algorithmic parallelism. Specifically, three pattern recognition (PR) approaches are examined for acceleration across multiple parallel computing architectures, namely field programmable gate arrays (FPGAs) and general purpose graphical processing units (GPGPUs). Phase-only filter correlation for fingerprint identification was studied as the first PR approach. This approach\u27s sensitivity to angular rotations, scaling, and missing data was surveyed. Additionally, a novel FPGA implementation of this algorithm was created using fixed point computations, deep pipelining, and four computation phases. Communication and computation were overlapped to efficiently process large fingerprint galleries. The FPGA implementation showed approximately a 47 times speedup over a central processing unit (CPU) implementation with negligible impact on precision. For the second PR approach, a spiking neural network (SNN) algorithm for a character recognition application was examined. A novel FPGA implementation of the approach was developed incorporating a scalable modular SNN processing element (PE) to efficiently perform neural computations. The modular SNN PE incorporated streaming memory, fixed point computation, and deep pipelining. This design showed speedups of approximately 3.3 and 8.5 times over CPU implementations for 624 and 9,264 sized neural networks, respectively. Results indicate that the PE design could scale to process larger sized networks easily. Finally for the third PR approach, cellular simultaneous recurrent networks (CSRNs) were investigated for GPGPU acceleration. Particularly, the applications of maze traversal and face recognition were studied. Novel GPGPU implementations were developed employing varying quantities of task-level, data-level, and instruction-level parallelism to achieve efficient runtime performance. Furthermore, the performance of the face recognition application was examined across a heterogeneous cluster of multi-core and GPGPU architectures. A combination of multi-core processors and GPGPUs achieved roughly a 996 times speedup over a single-core CPU implementation. From examining these PR approaches for acceleration, this dissertation presents useful techniques and insight applicable to other algorithms to improve performance when designing a parallel implementation

    SOFTWARE AND HARDWARE IMPLEMENTATION OF THE NEUROMORPHIC LGN BASED IMAGE PROCESSING AND FEATURE EXTRACTION

    Get PDF
    The processing of the graphical data is popular methodology of obtaining important information. However, there is a major drawback: it typically requires large computational resources. The human brain is an excellent example of the efficient image processing hardware, due to the fact the biological visual system can allow to easily and quickly obtain the information of the world around, such as object identification and movement detection. In particular, there is one element of the biological visual system that has unique functionality in image processing, which is lateral geniculate nucleus (LGN). Ganglion cells, which are terminated in LGN, have high sensitivity to the image spatial intensity difference. This cell feature is used for pre-processing of the visual data before being modulated and relayed to the main processing module, visual cortex. As a result, the processing load on cortex is reduced, due to the pre-processing of the data. The aim of the project is to develop the algorithm for visual features extraction, such as edge detection, based on the structure and properties similar to the LGN, with a possibility of the hardware model implementation. Preliminary results show the edge detection property of the proposed method. Moreover, the measured performance is comparable to other popular edge detection techniques, even exceeding expectations to small extent in the noisy environment
    corecore