54 research outputs found

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Shaping future low-carbon energy and transportation systems: Digital technologies and applications

    Get PDF
    Digitalization and decarbonization are projected to be two major trends in the coming decades. As the already widespread process of digitalization continues to progress, especially in energy and transportation systems, massive data will be produced, and how these data could support and promote decarbonization has become a pressing concern. This paper presents a comprehensive review of digital technologies and their potential applications in low-carbon energy and transportation systems from the perspectives of infrastructure, common mechanisms and algorithms, and system-level impacts, as well as the application of digital technologies to coupled energy and transportation systems with electric vehicles. This paper also identifies corresponding challenges and future research directions, such as in the field of blockchain, digital twin, vehicle-to-grid, low-carbon computing, and data security and privacy, especially in the context of integrated energy and transportation systems

    Towards low complexity matching theory for uplink wireless communication systems

    Get PDF
    Millimetre wave (mm-Wave) technology is considered a promising direction to achieve the high quality of services (QoSs) because it can provide high bandwidth, achieving a higher transmission rate due to its immunity to interference. However, there are several limitations to utilizing mm-Wave technology, such as more extraordinary precision hardware is manufactured at a higher cost because the size of its components is small. Consequently, mm-Wave technology is rarely applicable for long-distance applications due to its narrow beams width. Therefore, using cell-free massive multiple input multiple output (MIMO) with mm-Wave technology can solve these issues because this architecture of massive MIMO has better system performance, in terms of high achievable rate, high coverage, and handover-free, than conventional architectures, such as massive MIMO systems’ co-located and distributed (small cells). This technology necessitates a significant amount of power because each distributed access point (AP) has several antennas. Each AP has a few radio frequency (RF) chains in hybrid beamforming. Therefore more APs mean a large number of total RF chains in the cell-free network, which increases power consumption. To solve this problem, deactivating some antennas or RF chains at each AP can be utilized. However, the size of the cell-free network yields these two options as computationally demanding. On the other hand, a large number of users in the cell-free network causes pilot contamination issue due to the small length of the uplink training phase. This issue has been solved in the literature based on two options: pilot assignment and pilot power control. Still, these two solutions are complex due to the cell-free network size. Motivated by what was mentioned previously, this thesis proposes a novel technique with low computational complexity based on matching theory for antenna selection, RF chains activation, pilot assignment and pilot power control. The first part of this thesis provides an overview of matching theory and the conventional massive MIMO systems. Then, an overview of the cell-free massive MIMO systems and the related works of the signal processing techniques of the cell-free mm-Wave massive MIMO systems to maximize energy efficiency (EE), are provided. Based on the limitations of these techniques, the second part of this thesis presents a hybrid beamforming architecture with constant phase shifters (CPSs) for the distributed uplink cell-free mm-Wave massive MIMO systems based on exploiting antenna selection to reduce power consumption. The proposed scheme uses a matching technique to obtain the number of selected antennas which can contribute more to the desired signal power than the interference power for each RF chain at each AP. Therefore, the third part of this thesis solves the issue of the huge complexity of activating RF chains by presenting a low-complexity matching approach to activate a set of RF chains based on the Hungarian method to maximize the total EE in the centralized uplink of the cell-free mm-Wave massive MIMO systems when it is proposed hybrid beamforming with fully connected phase shifters network. The pilot contamination issue has been discussed in the last part of this thesis by utilizing matching theory in pilot assignment and pilot power control design for the uplink of cell-free massive MIMO systems to maximize SE. Firstly, an assignment optimization problem has been formulated to find the best possible pilot sequences to be inserted into a genetic algorithm (GA). Therefore, the GA will find the optimal solution. After that, a minimum-weighted assignment problem has been formulated regarding the power control design to assign pilot power control coefficients to the quality of the estimated channel. Then, the Hungarian method is utilized to solve this problem. The simulation results of the proposed matching theory for the mentioned issues reveal that the proposed matching approach is more energy-efficient and has lower computational complexity than state-of-the-art schemes for antenna selection and RF chain activation. In addition, the proposed matching schemes outperform the state-of-the-art techniques concerning the pilot assignment and the pilot power control design. This means that network scalability can be guaranteed with low computational complexity

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field
    • …
    corecore