14,306 research outputs found

    Alternation in Quantum Programming: From Superposition of Data to Superposition of Programs

    Full text link
    We extract a novel quantum programming paradigm - superposition of programs - from the design idea of a popular class of quantum algorithms, namely quantum walk-based algorithms. The generality of this paradigm is guaranteed by the universality of quantum walks as a computational model. A new quantum programming language QGCL is then proposed to support the paradigm of superposition of programs. This language can be seen as a quantum extension of Dijkstra's GCL (Guarded Command Language). Surprisingly, alternation in GCL splits into two different notions in the quantum setting: classical alternation (of quantum programs) and quantum alternation, with the latter being introduced in QGCL for the first time. Quantum alternation is the key program construct for realizing the paradigm of superposition of programs. The denotational semantics of QGCL are defined by introducing a new mathematical tool called the guarded composition of operator-valued functions. Then the weakest precondition semantics of QGCL can straightforwardly derived. Another very useful program construct in realizing the quantum programming paradigm of superposition of programs, called quantum choice, can be easily defined in terms of quantum alternation. The relation between quantum choices and probabilistic choices is clarified through defining the notion of local variables. We derive a family of algebraic laws for QGCL programs that can be used in program verification, transformations and compilation. The expressive power of QGCL is illustrated by several examples where various variants and generalizations of quantum walks are conveniently expressed using quantum alternation and quantum choice. We believe that quantum programming with quantum alternation and choice will play an important role in further exploiting the power of quantum computing.Comment: arXiv admin note: substantial text overlap with arXiv:1209.437

    Quantum Alternation: Prospects and Problems

    Full text link
    We propose a notion of quantum control in a quantum programming language which permits the superposition of finitely many quantum operations without performing a measurement. This notion takes the form of a conditional construct similar to the IF statement in classical programming languages. We show that adding such a quantum IF statement to the QPL programming language simplifies the presentation of several quantum algorithms. This motivates the possibility of extending the denotational semantics of QPL to include this form of quantum alternation. We give a denotational semantics for this extension of QPL based on Kraus decompositions rather than on superoperators. Finally, we clarify the relation between quantum alternation and recursion, and discuss the possibility of lifting the semantics defined by Kraus operators to the superoperator semantics defined by Selinger.Comment: In Proceedings QPL 2015, arXiv:1511.0118

    The antiferromagnetic order in an F-AF random alternating quantum spin chain : (CH_3)_2 CHNH_3 Cu(Cl_x Br_{1-x})_3

    Full text link
    A possibility of the uniform antiferromagnetic order is pointed out in an S=1/2 ferromagnetic (F) - antiferromagnetic (AF) random alternating Heisenberg quantum spin chain compound: (CH_3)_2 CHNH_3 Cu(Cl_x Br_{1-x})_3. The system possesses the bond alternation of strong random bonds that take +/- 2J and weak uniform AF bonds of -J. In the pure concentration limits, the model reduces to the AF-AF alternation chain at x=0 and to the F-AF alternation chain at x=1. The nonequilibrium relaxation of large-scale quantum Monte Carlo simulations exhibits critical behaviors of the uniform AF order in the intermediate concentration region, which explains the experimental observation of the magnetic phase transition. The present results suggest that the uniform AF order may survive even in the presence of the randomly located ferromagnetic bonds.Comment: 4 pages, 3 figure

    Can Quantum Lattice Fluctuations Destroy the Peierls Broken Symmetry Ground State?

    Full text link
    The study of bond alternation in one-dimensional electronic systems has had a long history. Theoretical work in the 1930s predicted the absence of bond alternation in the limit of infinitely long conjugated polymers; a result later contradicted by experimental investigations. When this issue was re-examined in the 1950s it was shown in the adiabatic limit that bond alternation occurs for any value of electron-phonon coupling. The question of whether this conclusion remains valid for quantized nuclear degrees of freedom was first addressed in the 1980s. Since then a series of numerical calculations on models with gapped, dispersionless phonons have suggested that bond alternation is destroyed by quantum fluctuations below a critical value of electron-phonon coupling. In this work we study a more realistic model with gapless, dispersive phonons. By solving this model with the DMRG method we show that bond alternation remains robust for any value of electron-phonon coupling

    Alternation in Quantum Programming: From Superposition of Data to Superposition of Programs

    Full text link
    We extract a novel quantum programming paradigm - superposition of programs - from the design idea of a popular class of quantum algorithms, namely quantum walk-based algorithms. The generality of this paradigm is guaranteed by the universality of quantum walks as a computational model. A new quantum programming language QGCL is then proposed to support the paradigm of superposition of programs. This language can be seen as a quantum extension of Dijkstra's GCL (Guarded Command Language). Surprisingly, alternation in GCL splits into two different notions in the quantum setting: classical alternation (of quantum programs) and quantum alternation, with the latter being introduced in QGCL for the first time. Quantum alternation is the key program construct for realizing the paradigm of superposition of programs. The denotational semantics of QGCL are defined by introducing a new mathematical tool called the guarded composition of operator-valued functions. Then the weakest precondition semantics of QGCL can straightforwardly derived. Another very useful program construct in realizing the quantum programming paradigm of superposition of programs, called quantum choice, can be easily defined in terms of quantum alternation. The relation between quantum choices and probabilistic choices is clarified through defining the notion of local variables. We derive a family of algebraic laws for QGCL programs that can be used in program verification, transformations and compilation. The expressive power of QGCL is illustrated by several examples where various variants and generalizations of quantum walks are conveniently expressed using quantum alternation and quantum choice. We believe that quantum programming with quantum alternation and choice will play an important role in further exploiting the power of quantum computing

    Phase diagram of ferrimagnetic ladders with bond-alternation

    Full text link
    We study the phase diagram of a 2-leg bond-alternation spin-(1/2, 1) ladder for two different configurations using a quantum renormalization group approach. Although d-dimensional ferrimagnets show gapless behavior, we will explicitly show that the effect of the spin mixing and the bond-alternation can open the possibility for observing an energy gap. We show that the gapless phases of such systems can be equivalent to the 1-dimensional half-integer antiferroamgnets, besides the gapless ferrimagnetic phases. We therefore propose a phase transition between these two gapless phases that can be seen in the parameter space.Comment: 5 pages and 3 ps figures, accepted in Phys. Rev.

    Low-temperature properties of the spin-1 antiferromagnetic Heisenberg chain with bond-alternation

    Full text link
    We investigate the low-temperature properties of the spin-1 antiferromagnetic Heisenberg chain with bond-alternation by the quantum Monte Carlo method (loop algorithm). The strength of bond-alternation at the gapless point is estimated as δc=0.2595±0.0005\delta_{c}=0.2595\pm0.0005. We confirm numerically that the low-temperature properties at the gapless point are consistent with field theoretical predictions. The numerical results are compared with those of the spin-1/2 antiferromagnetic Heisenberg chain and recent experimental results for [\{Ni(333-tet)(μ\mu-N3_3)\}n_n](ClO4_4)n_n (333-tet=tetraamine N,N′N,N^{\prime}-bis(3-aminopropyl)-1,3-propanediamine).Comment: 18 pages, RevTex, 9 figures, Submitted to Phys.Rev.
    • …
    corecore