7,133 research outputs found

    Seeking Quantum Speedup Through Spin Glasses: The Good, the Bad, and the Ugly

    Get PDF
    There has been considerable progress in the design and construction of quantum annealing devices. However, a conclusive detection of quantum speedup over traditional silicon-based machines remains elusive, despite multiple careful studies. In this work we outline strategies to design hard tunable benchmark instances based on insights from the study of spin glasses - the archetypal random benchmark problem for novel algorithms and optimization devices. We propose to complement head-to-head scaling studies that compare quantum annealing machines to state-of-the-art classical codes with an approach that compares the performance of different algorithms and/or computing architectures on different classes of computationally hard tunable spin-glass instances. The advantage of such an approach lies in having to only compare the performance hit felt by a given algorithm and/or architecture when the instance complexity is increased. Furthermore, we propose a methodology that might not directly translate into the detection of quantum speedup, but might elucidate whether quantum annealing has a "`quantum advantage" over corresponding classical algorithms like simulated annealing. Our results on a 496 qubit D-Wave Two quantum annealing device are compared to recently-used state-of-the-art thermal simulated annealing codes.Comment: 14 pages, 8 figures, 3 tables, way too many reference

    Faster quantum mixing for slowly evolving sequences of Markov chains

    Get PDF
    Markov chain methods are remarkably successful in computational physics, machine learning, and combinatorial optimization. The cost of such methods often reduces to the mixing time, i.e., the time required to reach the steady state of the Markov chain, which scales as δ−1\delta^{-1}, the inverse of the spectral gap. It has long been conjectured that quantum computers offer nearly generic quadratic improvements for mixing problems. However, except in special cases, quantum algorithms achieve a run-time of O(δ−1N)\mathcal{O}(\sqrt{\delta^{-1}} \sqrt{N}), which introduces a costly dependence on the Markov chain size N,N, not present in the classical case. Here, we re-address the problem of mixing of Markov chains when these form a slowly evolving sequence. This setting is akin to the simulated annealing setting and is commonly encountered in physics, material sciences and machine learning. We provide a quantum memory-efficient algorithm with a run-time of O(δ−1N4)\mathcal{O}(\sqrt{\delta^{-1}} \sqrt[4]{N}), neglecting logarithmic terms, which is an important improvement for large state spaces. Moreover, our algorithms output quantum encodings of distributions, which has advantages over classical outputs. Finally, we discuss the run-time bounds of mixing algorithms and show that, under certain assumptions, our algorithms are optimal.Comment: 20 pages, 2 figure

    Glassy Chimeras could be blind to quantum speedup: Designing better benchmarks for quantum annealing machines

    Get PDF
    Recently, a programmable quantum annealing machine has been built that minimizes the cost function of hard optimization problems by adiabatically quenching quantum fluctuations. Tests performed by different research teams have shown that, indeed, the machine seems to exploit quantum effects. However experiments on a class of random-bond instances have not yet demonstrated an advantage over classical optimization algorithms on traditional computer hardware. Here we present evidence as to why this might be the case. These engineered quantum annealing machines effectively operate coupled to a decohering thermal bath. Therefore, we study the finite-temperature critical behavior of the standard benchmark problem used to assess the computational capabilities of these complex machines. We simulate both random-bond Ising models and spin glasses with bimodal and Gaussian disorder on the D-Wave Chimera topology. Our results show that while the worst-case complexity of finding a ground state of an Ising spin glass on the Chimera graph is not polynomial, the finite-temperature phase space is likely rather simple: Spin glasses on Chimera have only a zero-temperature transition. This means that benchmarking optimization methods using spin glasses on the Chimera graph might not be the best benchmark problems to test quantum speedup. We propose alternative benchmarks by embedding potentially harder problems on the Chimera topology. Finally, we also study the (reentrant) disorder-temperature phase diagram of the random-bond Ising model on the Chimera graph and show that a finite-temperature ferromagnetic phase is stable up to 19.85(15)% antiferromagnetic bonds. Beyond this threshold the system only displays a zero-temperature spin-glass phase. Our results therefore show that a careful design of the hardware architecture and benchmark problems is key when building quantum annealing machines.Comment: 8 pages, 5 figures, 1 tabl
    • …
    corecore