275 research outputs found

    Quantum Algorithms for Learning and Testing Juntas

    Full text link
    In this article we develop quantum algorithms for learning and testing juntas, i.e. Boolean functions which depend only on an unknown set of k out of n input variables. Our aim is to develop efficient algorithms: - whose sample complexity has no dependence on n, the dimension of the domain the Boolean functions are defined over; - with no access to any classical or quantum membership ("black-box") queries. Instead, our algorithms use only classical examples generated uniformly at random and fixed quantum superpositions of such classical examples; - which require only a few quantum examples but possibly many classical random examples (which are considered quite "cheap" relative to quantum examples). Our quantum algorithms are based on a subroutine FS which enables sampling according to the Fourier spectrum of f; the FS subroutine was used in earlier work of Bshouty and Jackson on quantum learning. Our results are as follows: - We give an algorithm for testing k-juntas to accuracy ϵ\epsilon that uses O(k/ϵ)O(k/\epsilon) quantum examples. This improves on the number of examples used by the best known classical algorithm. - We establish the following lower bound: any FS-based k-junta testing algorithm requires Ω(k)\Omega(\sqrt{k}) queries. - We give an algorithm for learning kk-juntas to accuracy ϵ\epsilon that uses O(ϵ1klogk)O(\epsilon^{-1} k\log k) quantum examples and O(2klog(1/ϵ))O(2^k \log(1/\epsilon)) random examples. We show that this learning algorithms is close to optimal by giving a related lower bound.Comment: 15 pages, 1 figure. Uses synttree package. To appear in Quantum Information Processin

    Quantum algorithms for testing Boolean functions

    Full text link
    We discuss quantum algorithms, based on the Bernstein-Vazirani algorithm, for finding which variables a Boolean function depends on. There are 2^n possible linear Boolean functions of n variables; given a linear Boolean function, the Bernstein-Vazirani quantum algorithm can deterministically identify which one of these Boolean functions we are given using just one single function query. The same quantum algorithm can also be used to learn which input variables other types of Boolean functions depend on, with a success probability that depends on the form of the Boolean function that is tested, but does not depend on the total number of input variables. We also outline a procedure to futher amplify the success probability, based on another quantum algorithm, the Grover search

    Quantum algorithms for testing and learning Boolean functions

    Get PDF

    Learning with Errors is easy with quantum samples

    Full text link
    Learning with Errors is one of the fundamental problems in computational learning theory and has in the last years become the cornerstone of post-quantum cryptography. In this work, we study the quantum sample complexity of Learning with Errors and show that there exists an efficient quantum learning algorithm (with polynomial sample and time complexity) for the Learning with Errors problem where the error distribution is the one used in cryptography. While our quantum learning algorithm does not break the LWE-based encryption schemes proposed in the cryptography literature, it does have some interesting implications for cryptography: first, when building an LWE-based scheme, one needs to be careful about the access to the public-key generation algorithm that is given to the adversary; second, our algorithm shows a possible way for attacking LWE-based encryption by using classical samples to approximate the quantum sample state, since then using our quantum learning algorithm would solve LWE

    A Survey of Quantum Learning Theory

    Get PDF
    This paper surveys quantum learning theory: the theoretical aspects of machine learning using quantum computers. We describe the main results known for three models of learning: exact learning from membership queries, and Probably Approximately Correct (PAC) and agnostic learning from classical or quantum examples.Comment: 26 pages LaTeX. v2: many small changes to improve the presentation. This version will appear as Complexity Theory Column in SIGACT News in June 2017. v3: fixed a small ambiguity in the definition of gamma(C) and updated a referenc
    corecore