18,088 research outputs found

    Quantum Distributed Algorithm for Triangle Finding in the CONGEST Model

    Get PDF

    Quantum Algorithm for Triangle Finding in Sparse Graphs

    Full text link
    This paper presents a quantum algorithm for triangle finding over sparse graphs that improves over the previous best quantum algorithm for this task by Buhrman et al. [SIAM Journal on Computing, 2005]. Our algorithm is based on the recent O~(n5/4)\tilde O(n^{5/4})-query algorithm given by Le Gall [FOCS 2014] for triangle finding over dense graphs (here nn denotes the number of vertices in the graph). We show in particular that triangle finding can be solved with O(n5/4ϵ)O(n^{5/4-\epsilon}) queries for some constant ϵ>0\epsilon>0 whenever the graph has at most O(n2c)O(n^{2-c}) edges for some constant c>0c>0.Comment: 13 page

    Quantum Algorithms for the Triangle Problem

    Full text link
    We present two new quantum algorithms that either find a triangle (a copy of K3K_{3}) in an undirected graph GG on nn nodes, or reject if GG is triangle free. The first algorithm uses combinatorial ideas with Grover Search and makes O~(n10/7)\tilde{O}(n^{10/7}) queries. The second algorithm uses O~(n13/10)\tilde{O}(n^{13/10}) queries, and it is based on a design concept of Ambainis~\cite{amb04} that incorporates the benefits of quantum walks into Grover search~\cite{gro96}. The first algorithm uses only O(logn)O(\log n) qubits in its quantum subroutines, whereas the second one uses O(n) qubits. The Triangle Problem was first treated in~\cite{bdhhmsw01}, where an algorithm with O(n+nm)O(n+\sqrt{nm}) query complexity was presented, where mm is the number of edges of GG.Comment: Several typos are fixed, and full proofs are included. Full version of the paper accepted to SODA'0

    Space as a low-temperature regime of graphs

    Full text link
    I define a statistical model of graphs in which 2-dimensional spaces arise at low temperature. The configurations are given by graphs with a fixed number of edges and the Hamiltonian is a simple, local function of the graphs. Simulations show that there is a transition between a low-temperature regime in which the graphs form triangulations of 2-dimensional surfaces and a high-temperature regime, where the surfaces disappear. I use data for the specific heat and other observables to discuss whether this is a phase transition. The surface states are analyzed with regard to topology and defects.Comment: 22 pages, 12 figures; v3: published version; J.Stat.Phys. 201

    Locally Causal Dynamical Triangulations in Two Dimensions

    Get PDF
    We analyze the universal properties of a new two-dimensional quantum gravity model defined in terms of Locally Causal Dynamical Triangulations (LCDT). Measuring the Hausdorff and spectral dimensions of the dynamical geometrical ensemble, we find numerical evidence that the continuum limit of the model lies in a new universality class of two-dimensional quantum gravity theories, inequivalent to both Euclidean and Causal Dynamical Triangulations
    corecore