2,873 research outputs found

    Dynamics of the vortex-particle complexes bound to the free surface of superfluid helium

    Get PDF
    We present an experimental and theoretical study of the 2D dynamics of electrically charged nanoparticles trapped under a free surface of superfluid helium in a static vertical electric field. We focus on the dynamics of particles driven by the interaction with quantized vortices terminating at the free surface. We identify two types of particle trajectories and the associated vortex structures: vertical linear vortices pinned at the bottom of the container and half-ring vortices travelling along the free surface of the liquid

    Superfluid toroidal currents in atomic condensates

    Get PDF
    The dynamics of toroidal condensates in the presence of condensate flow and dipole perturbation have been investigated. The Bogoliubov spectrum of condensate is calculated for an oblate torus using a discrete-variable representation and a spectral method to high accuracy. The transition from spheroidal to toroidal geometry of the trap displaces the energy levels into narrow bands. The lowest-order acoustic modes are quantized with the dispersion relation Ï‰âˆŒâˆŁmâˆŁÏ‰s\omega \sim |m| \omega_s with m=0,±1,±2,...m=0,\pm 1,\pm 2, .... A condensate with toroidal current Îș\kappa splits the ∣m∣|m| co-rotating and counter-rotating pair by the amount: ΔE≈2∣m∣ℏ2Îș<r−2>\Delta E \approx 2 |m|\hbar^2 \kappa < r^{-2}>. Radial dipole excitations are the lowest energy dissipation modes. For highly occupied condensates the nonlinearity creates an asymmetric mix of dipole circulation and nonlinear shifts in the spectrum of excitations so that the center of mass circulates around the axis of symmetry of the trap. We outline an experimental method to study these excitations.Comment: 8 pages, 8 figure

    Are Electrons Oscillating Photons, Oscillating “Vacuum," or Something Else? The 2015 Panel Discussion: An Unprecedented Engineering Opportunity: A Dynamical Linear Theory of Energy as Light and Matter

    Get PDF
    Platform: What physical attributes separate EM waves, of the enormous band of radio to visible to x-ray, from the high energy narrow band of gamma-ray? From radio to visible to x-ray, telescopes are designed based upon the optical imaging theory; which is an extension of the Huygens-Fresnel diffraction integral. Do we understand the physical properties of gamma rays that defy us to manipulate them similarly? One demonstrated unique property of gamma rays is that they can be converted to elementary particles (electron and positron pair); or a particle-antiparticle pair can be converted into gamma rays. Thus, EM waves and elementary particles, being inter-convertible; we cannot expect to understand the deeper nature of light without succeeding to find structural inter-relationship between photons and particles. This topic is directly relevant to develop a deeper understanding of the nature of light; which will, in turn, help our engineers to invent better optical instruments

    Azimuthally unidirectional transport of energy in magnetoelectric fields. Topological Lenz effect

    Full text link
    Magnetic dipolar modes (MDMs) in a quasi 2D ferrite disk are microwave energy eigenstate oscillations with topologically distinct structures of rotating fields and unidirectional power flow circulations. At the first glance, this might seem to violate the law of conservation of an angular momentum, since the microwave structure with an embedded ferrite sample is mechanically fixed. However, an angular momentum is seen to be conserved if topological properties of electromagnetic fields in the entire microwave structure are taken into account. In this paper we show that due to the topological action of the azimuthally unidirectional transport of energy in a MDM resonance ferrite sample there exists the opposite topological reaction on a metal screen placed near this sample. We call this effect topological Lenz effect. The topological Lenz law is applied to opposite topological charges, one in a ferrite sample and another on a metal screen. The MDM originated near fields, the magnetoelectric (ME) fields, induce helical surface electric currents and effective charges on a metal. The fields formed by these currents and charges will oppose their cause

    Superfluidity of the BEC at finite temperature

    Full text link
    We use the classical fields approximation to study a translational flow of the condensate with respect to the thermal cloud in a weakly interacting Bose gas. We study both, subcritical and supercritical relative velocity cases and analyze in detail a state of stationary flow which is reached in the dynamics. This state corresponds to the thermal equilibrium, which is characterized by the relative velocity of the condensate and the thermal cloud. The superfluidity manifests itself in the existence of many thermal equilibria varying in (the value of this velocity) the relative velocity between the condensate and the thermal cloud. We pay a particular attention to excitation spectra in a phonon as well as in a particle regime. Finally, we introduce a measure of the amount of the superfluid fraction in a weakly interacting Bose gas, allowing for the precise distinction between the superfluid and the condensed fractions in a single and consistent framework.Comment: 8 pages, 5 figure
    • 

    corecore