4,680 research outputs found

    Quantized Compressive K-Means

    Full text link
    The recent framework of compressive statistical learning aims at designing tractable learning algorithms that use only a heavily compressed representation-or sketch-of massive datasets. Compressive K-Means (CKM) is such a method: it estimates the centroids of data clusters from pooled, non-linear, random signatures of the learning examples. While this approach significantly reduces computational time on very large datasets, its digital implementation wastes acquisition resources because the learning examples are compressed only after the sensing stage. The present work generalizes the sketching procedure initially defined in Compressive K-Means to a large class of periodic nonlinearities including hardware-friendly implementations that compressively acquire entire datasets. This idea is exemplified in a Quantized Compressive K-Means procedure, a variant of CKM that leverages 1-bit universal quantization (i.e. retaining the least significant bit of a standard uniform quantizer) as the periodic sketch nonlinearity. Trading for this resource-efficient signature (standard in most acquisition schemes) has almost no impact on the clustering performances, as illustrated by numerical experiments

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table

    DART: Distribution Aware Retinal Transform for Event-based Cameras

    Full text link
    We introduce a generic visual descriptor, termed as distribution aware retinal transform (DART), that encodes the structural context using log-polar grids for event cameras. The DART descriptor is applied to four different problems, namely object classification, tracking, detection and feature matching: (1) The DART features are directly employed as local descriptors in a bag-of-features classification framework and testing is carried out on four standard event-based object datasets (N-MNIST, MNIST-DVS, CIFAR10-DVS, NCaltech-101). (2) Extending the classification system, tracking is demonstrated using two key novelties: (i) For overcoming the low-sample problem for the one-shot learning of a binary classifier, statistical bootstrapping is leveraged with online learning; (ii) To achieve tracker robustness, the scale and rotation equivariance property of the DART descriptors is exploited for the one-shot learning. (3) To solve the long-term object tracking problem, an object detector is designed using the principle of cluster majority voting. The detection scheme is then combined with the tracker to result in a high intersection-over-union score with augmented ground truth annotations on the publicly available event camera dataset. (4) Finally, the event context encoded by DART greatly simplifies the feature correspondence problem, especially for spatio-temporal slices far apart in time, which has not been explicitly tackled in the event-based vision domain.Comment: 12 pages, revision submitted to TPAMI in Nov 201
    corecore