2,339 research outputs found

    Quantization-free parameter space reduction in ellipse detection

    Get PDF
    Ellipse modeling and detection is an important task in many computer vision and pattern recognition applications. In this thesis, four Hough-based transform algorithms have been carefully selected, studied and analyzed. These techniques include the Standard Hough Transform, Probabilistic Hough Transform, Randomized Hough Transform and Directional Information for Parameter Space Decomposition. The four algorithms are analyzed and compared against each other in this study using synthetic ellipses. Objects such as noise have been introduced to distract ellipse detection in some of the synthetic ellipse images. To complete the analysis, real world images were used to test each algorithm resulting in the proposal of a new algorithm. The proposed algorithm uses the strengths from each of the analyzed algorithms. This new algorithm uses the same approach as the Directional Information for Parameter Space Decomposition to determine the ellipse center. However, in the process of collecting votes for the ellipse center, pairs of unique edge points voted for the center are also kept in an array. A minimum of two pairs of edge points are required to determine the ellipse. This significantly reduces the usual five dimensional array requirement needed in the Standard Hough Transform. We present results of the experiments with synthetic images demonstrating that the proposed method is more effective and robust to noise. Real world applications on complex real world images are also performed successfully in the experiment

    A survey of the state of the art and focused research in range systems, task 2

    Get PDF
    Many communication, control, and information processing subsystems are modeled by linear systems incorporating tapped delay lines (TDL). Such optimized subsystems result in full precision multiplications in the TDL. In order to reduce complexity and cost in a microprocessor implementation, these multiplications can be replaced by single-shift instructions which are equivalent to powers of two multiplications. Since, in general, the obvious operation of rounding the infinite precision TDL coefficients to the nearest powers of two usually yield quite poor system performance, the optimum powers of two coefficient solution was considered. Detailed explanations on the use of branch-and-bound algorithms for finding the optimum powers of two solutions are given. Specific demonstration of this methodology to the design of a linear data equalizer and its implementation in assembly language on a 8080 microprocessor with a 12 bit A/D converter are reported. This simple microprocessor implementation with optimized TDL coefficients achieves a system performance comparable to the optimum linear equalization with full precision multiplications for an input data rate of 300 baud. The philosophy demonstrated in this implementation is dully applicable to many other microprocessor controlled information processing systems

    Tunnelling of topological line defects in strongly coupled superfluids

    Get PDF
    The geometric theory of vortex tunnelling in superfluid liquids is developed. Geometry rules the tunnelling process in the approximation of an incompressible superfluid, which yields the identity of phase and configuration space in the vortex collective co-ordinate. To exemplify the implications of this approach to tunnelling, we solve explicitly for the two-dimensional motion of a point vortex in the presence of an ellipse, showing that the hydrodynamic collective co-ordinate description limits the constant energy paths allowed for the vortex in configuration space. We outline the experimental procedure used in helium II to observe tunnelling events, and compare the conclusions we draw to the experimental results obtained so far. Tunnelling in Fermi superfluids is discussed, where it is assumed that the low energy quasiparticle excitations localised in the vortex core govern the vortex dynamical equations. The tunnelling process can be dominated by Hall or dissipative terms, respectively be under the influence of both, with a possible realization of this last intermediate case in unconventional, high-temperature superconductors.Comment: 51 pages, 15 figures, uses Ann. Phys. (Leipzig) style file; forms part of author's dissertation, available at http://xxx.lanl.gov/abs/cond-mat/9909166v

    Design of strapdown gyroscopes for a dynamic environment Semiannual report, Dec. 1967 - May 1968

    Get PDF
    Systems analysis, design, and operating characteristics of strapdown gyroscopes for dynamic environmen

    From high temperature supercondutivity to quantum spin liquid: progress in strong correlation physics

    Full text link
    This review gives a rather general discussion of high temperature superconductors as an example of a strongly correlated material. The argument is made that in view of the many examples of unconventional superconductors discovered in the past twenty years, we should no longer be surprised that superconductivity emerges as a highly competitive ground state in systems where Coulomb repulsion plays a dominant role. The physics of the cuprates is discussed, emphasizing the unusual pseudogap phase in the underdoped region. It is argued that the resonating valence bond (RVB) picture, as formulated using gauge theory with fermionic and bosonic matter fields, gives an adequate physical understanding, even though many details are beyond the powers of current calculational tools. The recent discovery of quantum oscillations in a high magnetic field is discussed in this context. Meanwhile, the problem of the quantum spin liquid (a spin system with antiferromagnetic coupling which refuses to order even at zero temperature) is a somewhat simpler version of the high TcT_c problem where significant progress has been made recently. It is understood that the existence of matter fields can lead to de-confinement of the U(1) gauge theory in 2+1 dimensions, and novel new particles (called fractionalized particles), such as fermionic spinons which carry spin 12{1\over 2} and no charge, and gapless gauge bosons can emerge to create a new critical state at low energies. We even have a couple of real materials where such a scenario may be realized experimentally. The article ends with answers to questions such as: what limits TcT_c if pairing is driven by an electronic energy scale? why is the high TcT_c problem hard? why is there no consensus? and why is the high TcT_c problem important?Comment: Submitted as "Key Issue" essay for Report of Progress in Physics; v2: References are added and typos correcte

    Multiple light source detection.

    Get PDF
    Published versio
    • …
    corecore