1,846 research outputs found

    Foveated Video Streaming for Cloud Gaming

    Full text link
    Good user experience with interactive cloud-based multimedia applications, such as cloud gaming and cloud-based VR, requires low end-to-end latency and large amounts of downstream network bandwidth at the same time. In this paper, we present a foveated video streaming system for cloud gaming. The system adapts video stream quality by adjusting the encoding parameters on the fly to match the player's gaze position. We conduct measurements with a prototype that we developed for a cloud gaming system in conjunction with eye tracker hardware. Evaluation results suggest that such foveated streaming can reduce bandwidth requirements by even more than 50% depending on parametrization of the foveated video coding and that it is feasible from the latency perspective.Comment: Submitted to: IEEE 19th International Workshop on Multimedia Signal Processin

    JND-Based Perceptual Video Coding for 4:4:4 Screen Content Data in HEVC

    Get PDF
    The JCT-VC standardized Screen Content Coding (SCC) extension in the HEVC HM RExt + SCM reference codec offers an impressive coding efficiency performance when compared with HM RExt alone; however, it is not significantly perceptually optimized. For instance, it does not include advanced HVS-based perceptual coding methods, such as JND-based spatiotemporal masking schemes. In this paper, we propose a novel JND-based perceptual video coding technique for HM RExt + SCM. The proposed method is designed to further improve the compression performance of HM RExt + SCM when applied to YCbCr 4:4:4 SC video data. In the proposed technique, luminance masking and chrominance masking are exploited to perceptually adjust the Quantization Step Size (QStep) at the Coding Block (CB) level. Compared with HM RExt 16.10 + SCM 8.0, the proposed method considerably reduces bitrates (Kbps), with a maximum reduction of 48.3%. In addition to this, the subjective evaluations reveal that SC-PAQ achieves visually lossless coding at very low bitrates.Comment: Preprint: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2018

    Spatiotemporal adaptive quantization for the perceptual video coding of RGB 4:4:4 data

    Get PDF
    Due to the spectral sensitivity phenomenon of the Human Visual System (HVS), the color channels of raw RGB 4:4:4 sequences contain significant psychovisual redundancies; these redundancies can be perceptually quantized. The default quantization systems in the HEVC standard are known as Uniform Reconstruction Quantization (URQ) and Rate Distortion Optimized Quantization (RDOQ); URQ and RDOQ are not perceptually optimized for the coding of RGB 4:4:4 video data. In this paper, we propose a novel spatiotemporal perceptual quantization technique named SPAQ. With application for RGB 4:4:4 video data, SPAQ exploits HVS spectral sensitivity-related color masking in addition to spatial masking and temporal masking; SPAQ operates at the Coding Block (CB) level and the Prediction Unit (PU) level. The proposed technique perceptually adjusts the Quantization Step Size (QStep) at the CB level if high variance spatial data in G, B and R CBs is detected and also if high motion vector magnitudes in PUs are detected. Compared with anchor 1 (HEVC HM 16.17 RExt), SPAQ considerably reduces bitrates with a maximum reduction of approximately 80%. The Mean Opinion Score (MOS) in the subjective evaluations, in addition to the SSIM scores, show that SPAQ successfully achieves perceptually lossless compression compared with anchors

    Neural Video Compression with Diverse Contexts

    Full text link
    For any video codecs, the coding efficiency highly relies on whether the current signal to be encoded can find the relevant contexts from the previous reconstructed signals. Traditional codec has verified more contexts bring substantial coding gain, but in a time-consuming manner. However, for the emerging neural video codec (NVC), its contexts are still limited, leading to low compression ratio. To boost NVC, this paper proposes increasing the context diversity in both temporal and spatial dimensions. First, we guide the model to learn hierarchical quality patterns across frames, which enriches long-term and yet high-quality temporal contexts. Furthermore, to tap the potential of optical flow-based coding framework, we introduce a group-based offset diversity where the cross-group interaction is proposed for better context mining. In addition, this paper also adopts a quadtree-based partition to increase spatial context diversity when encoding the latent representation in parallel. Experiments show that our codec obtains 23.5% bitrate saving over previous SOTA NVC. Better yet, our codec has surpassed the under-developing next generation traditional codec/ECM in both RGB and YUV420 colorspaces, in terms of PSNR. The codes are at https://github.com/microsoft/DCVC.Comment: Accepted by CVPR 2023. Codes are at https://github.com/microsoft/DCV

    Perceptually-Driven Video Coding with the Daala Video Codec

    Full text link
    The Daala project is a royalty-free video codec that attempts to compete with the best patent-encumbered codecs. Part of our strategy is to replace core tools of traditional video codecs with alternative approaches, many of them designed to take perceptual aspects into account, rather than optimizing for simple metrics like PSNR. This paper documents some of our experiences with these tools, which ones worked and which did not. We evaluate which tools are easy to integrate into a more traditional codec design, and show results in the context of the codec being developed by the Alliance for Open Media.Comment: 19 pages, Proceedings of SPIE Workshop on Applications of Digital Image Processing (ADIP), 201

    RLFC: Random Access Light Field Compression using Key Views and Bounded Integer Encoding

    Full text link
    We present a new hierarchical compression scheme for encoding light field images (LFI) that is suitable for interactive rendering. Our method (RLFC) exploits redundancies in the light field images by constructing a tree structure. The top level (root) of the tree captures the common high-level details across the LFI, and other levels (children) of the tree capture specific low-level details of the LFI. Our decompressing algorithm corresponds to tree traversal operations and gathers the values stored at different levels of the tree. Furthermore, we use bounded integer sequence encoding which provides random access and fast hardware decoding for compressing the blocks of children of the tree. We have evaluated our method for 4D two-plane parameterized light fields. The compression rates vary from 0.08 - 2.5 bits per pixel (bpp), resulting in compression ratios of around 200:1 to 20:1 for a PSNR quality of 40 to 50 dB. The decompression times for decoding the blocks of LFI are 1 - 3 microseconds per channel on an NVIDIA GTX-960 and we can render new views with a resolution of 512X512 at 200 fps. Our overall scheme is simple to implement and involves only bit manipulations and integer arithmetic operations.Comment: Accepted for publication at Symposium on Interactive 3D Graphics and Games (I3D '19
    • …
    corecore