1,813 research outputs found

    Decoding of Non-Binary LDPC Codes Using the Information Bottleneck Method

    Full text link
    Recently, a novel lookup table based decoding method for binary low-density parity-check codes has attracted considerable attention. In this approach, mutual-information maximizing lookup tables replace the conventional operations of the variable nodes and the check nodes in message passing decoding. Moreover, the exchanged messages are represented by integers with very small bit width. A machine learning framework termed the information bottleneck method is used to design the corresponding lookup tables. In this paper, we extend this decoding principle from binary to non-binary codes. This is not a straightforward extension, but requires a more sophisticated lookup table design to cope with the arithmetic in higher order Galois fields. Provided bit error rate simulations show that our proposed scheme outperforms the log-max decoding algorithm and operates close to sum-product decoding.Comment: This paper has been presented at IEEE International Conference on Communications (ICC'19) in Shangha

    Mutual Information-Maximizing Quantized Belief Propagation Decoding of Regular LDPC Codes

    Full text link
    In mutual information-maximizing lookup table (MIM-LUT) decoding of low-density parity-check (LDPC) codes, table lookup operations are used to replace arithmetic operations. In practice, large tables need to be decomposed into small tables to save the memory consumption, at the cost of degraded error performance. In this paper, we propose a method, called mutual information-maximizing quantized belief propagation (MIM-QBP) decoding, to remove the lookup tables used for MIM-LUT decoding. Our method leads to a very efficient decoder, namely the MIM-QBP decoder, which can be implemented based only on simple mappings and fixed-point additions. Simulation results show that the MIM-QBP decoder can always considerably outperform the state-of-the-art MIM-LUT decoder, mainly because it can avoid the performance loss due to table decomposition. Furthermore, the MIM-QBP decoder with only 3 bits per message can outperform the floating-point belief propagation (BP) decoder at high signal-to-noise ratio (SNR) regions when testing on high-rate codes with a maximum of 10-30 iterations
    • …
    corecore