52 research outputs found

    COLOR HISTOGRAM BASED MEDICAL IMAGE RETRIEVAL SYSTEM

    Get PDF
    This paper aims to focus on the feature extraction, selection and database creation of brain images for image retrieval which will aid for computer assisted diagnosis. The impact of content-based access to medical images is frequently reported but existing systems are designed for only a particular context of diagnosis. But, our concept of image retrieval in medical applications aims at a general structure for semantic content analysis that is suitable for numerous applications in case-based reasoning. By using the features, the database created for comparison. The color histogram is used to measure the similarity between the stored database image and the query image. The image which is more similar to the query image is retrieved as the resultant image. If the quer

    A histogram-based approach for object-based query-by-shape-and-color in image and video databases

    Get PDF
    Cataloged from PDF version of article.Considering the fact that querying by low-level object features is essential in image and video data, an efficient approach for querying and retrieval by shape and color is proposed. The approach employs three specialized histograms, (i.e. distance, angle, and color histograms) to store feature-based information that is extracted from objects. The objects can be extracted from images or video frames. The proposed histogram-based approach is used as a component in the query-by-feature subsystem of a video database management system. The color and shape information is handled together to enrich the querying capabilities for content-based retrieval. The evaluation of the retrieval effectiveness and the robustness of the proposed approach is presented via performance experiments. (C) 2005 Elsevier Ltd All rights reserved

    Content-Dependent Image Search System for Aggregation of Color, Shape and Texture Features

    Get PDF
    The existing image search system often faces difficulty to find a appropriate retrieved image corresponding to an image query. The difficulty is commonly caused by that the users’ intention for searching image is different with dominant information of the image collected from feature extraction. In this paper we present a new approach for content-dependent image search system. The system utilizes information of color distribution inside an image and detects a cloud of clustered colors as something - supposed as an object. We applies segmentation of image as content-dependent process before feature extraction in order to identify is there any object or not inside an image. The system extracts 3 features, which are color, shape, and texture features and aggregates these features for similarity measurement between an image query and image database. HSV histogram color is used to extract color feature of image. While the shape feature extraction used Connected Component Labeling (CCL) which is calculated the area value, equivalent diameter, extent, convex hull, solidity, eccentricity, and perimeter of each object. The texture feature extraction used Leung Malik (LM)’s approach with 15 kernels.  For applicability of our proposed system, we applied the system with benchmark 1000 image SIMPLIcity dataset consisting of 10 categories namely Africans, beaches, buildings historians, buses, dinosaurs, elephants, roses, horses, mountains, and food. The experimental results performed 62% accuracy rate to detect objects by color feature, 71% by texture feature, 60% by shape feature, 72% by combined color-texture feature, 67% by combined color-shape feature, 72 % combined texture-shape features and 73% combined all features

    Extraction and representation of semantic information in digital media

    Get PDF

    Image quality assessment with manifold and machine learning

    Full text link

    A content-based image retrieval system for texture and color queries

    Get PDF
    Cataloged from PDF version of article.In recent years, very large collections of images and videos have grown rapidly. In parallel with this growth, content-based retrieval and querying the indexed collections are required to access visual information. Two of the main components of the visual information are texture and color. In this thesis, a content-based image retrieval system is presented that computes texture and color similarity among images. The underlying technique is based on the adaptation of a statistical approach to texture analysis. An optimal set of five second-order texture statistics are extracted from the Spatial Grey Level Dependency Matrix of each image, so as to render the feature vector for each image maximally informative, and yet to obtain a low vector dimensionality for efficiency in computation. The method for color analysis is the color histograms, and the information captured within histograms is extracted after a pre-processing phase that performs color transformation, quantization, and filtering. The features thus extracted and stored within feature vectors are later compared with an intersection-based method. The system is also extended for pre-processing images to segment regions with different textural quality, rather than operating globally over the whole image. The system also includes a framework for object-based color and texture querying, which might be useful for reducing the similarity error while comparing rectangular regions as objects. It is shown through experimental results and precision-recall analysis that the content-based retrieval system is effective in terms of retrieval and scalability.Konak, Eyüp SabriM.S

    Learning Semantic Features For Visual Recognition

    Get PDF
    Visual recognition (e.g., object, scene and action recognition) is an active area of research in computer vision due to its increasing number of real-world applications such as video (image) indexing and search, intelligent surveillance, human-machine interaction, robot navigation, etc. Effective modeling of the objects, scenes and actions is critical for visual recognition. Recently, bag of visual words (BoVW) representation, in which the image patches or video cuboids are quantized into visual words (i.e., mid-level features) based on their appearance similarity using clustering, has been widely and successfully explored. The advantages of this representation are: no explicit detection of objects or object parts and their tracking are required; the representation is somewhat tolerant to within-class deformations, and it is efficient for matching. However, the performance of the BoVW is sensitive to the size of the visual vocabulary. Therefore, computationally expensive cross-validation is needed to find the appropriate quantization granularity. This limitation is partially due to the fact that the visual words are not semantically meaningful. This limits the effectiveness and compactness of the representation. To overcome these shortcomings, in this thesis we present principled approach to learn a semantic vocabulary (i.e. high-level features) from a large amount of visual words (mid-level features). In this context, the thesis makes two major contributions. First, we have developed an algorithm to discover a compact yet discriminative semantic vocabulary. This vocabulary is obtained by grouping the visual-words based on their distribution in videos (images) into visual-word clusters. The mutual information (MI) be- tween the clusters and the videos (images) depicts the discriminative power of the semantic vocabulary, while the MI between visual-words and visual-word clusters measures the compactness of the vocabulary. We apply the information bottleneck (IB) algorithm to find the optimal number of visual-word clusters by finding the good tradeoff between compactness and discriminative power. We tested our proposed approach on the state-of-the-art KTH dataset, and obtained average accuracy of 94.2%. However, this approach performs one-side clustering, because only visual words are clustered regardless of which video they appear in. In order to leverage the co-occurrence of visual words and images, we have developed the co-clustering algorithm to simultaneously group the visual words and images. We tested our approach on the publicly available fifteen scene dataset and have obtained about 4% increase in the average accuracy compared to the one side clustering approaches. Second, instead of grouping the mid-level features, we first embed the features into a low-dimensional semantic space by manifold learning, and then perform the clustering. We apply Diffusion Maps (DM) to capture the local geometric structure of the mid-level feature space. The DM embedding is able to preserve the explicitly defined diffusion distance, which reflects the semantic similarity between any two features. Furthermore, the DM provides multi-scale analysis capability by adjusting the time steps in the Markov transition matrix. The experiments on KTH dataset show that DM can perform much better (about 3% to 6% improvement in average accuracy) than other manifold learning approaches and IB method. Above methods use only single type of features. In order to combine multiple heterogeneous features for visual recognition, we further propose the Fielder Embedding to capture the complicated semantic relationships between all entities (i.e., videos, images,heterogeneous features). The discovered relationships are then employed to further increase the recognition rate. We tested our approach on Weizmann dataset, and achieved about 17% 21% improvements in the average accuracy

    A histogram-based approach for object-based query-by-shape-and-color in image and video databases

    Get PDF
    Considering the fact that querying by low-level object features is essential in image and video data, an efficient approach for querying and retrieval by shape and color is proposed. The approach employs three specialized histograms, (i.e. distance, angle, and color histograms) to store feature-based information that is extracted from objects. The objects can be extracted from images or video frames. The proposed histogram-based approach is used as a component in the query-by-feature subsystem of a video database management system. The color and shape information is handled together to enrich the querying capabilities for content-based retrieval. The evaluation of the retrieval effectiveness and the robustness of the proposed approach is presented via performance experiments. © 2005 Elsevier Ltd. All rights reserved

    CONTENT-BASED IMAGE RETRIEVAL USING ENHANCED HYBRID METHODS WITH COLOR AND TEXTURE FEATURES

    Get PDF
    Content-based image retrieval (CBIR) automatically retrieves similar images to the query image by using the visual contents (features) of the image like color, texture and shape. Effective CBIR is based on efficient feature extraction for indexing and on effective query image matching with the indexed images for retrieval. However the main issue in CBIR is that how to extract the features efficiently because the efficient features describe well the image and they are used efficiently in matching of the images to get robust retrieval. This issue is the main inspiration for this thesis to develop a hybrid CBIR with high performance in the spatial and frequency domains. We propose various approaches, in which different techniques are fused to extract the statistical color and texture features efficiently in both domains. In spatial domain, the statistical color histogram features are computed using the pixel distribution of the Laplacian filtered sharpened images based on the different quantization schemes. However color histogram does not provide the spatial information. The solution is by using the histogram refinement method in which the statistical features of the regions in histogram bins of the filtered image are extracted but it leads to high computational cost, which is reduced by dividing the image into the sub-blocks of different sizes, to extract the color and texture features. To improve further the performance, color and texture features are combined using sub-blocks due to the less computational cos
    corecore