382 research outputs found

    Performance Analysis of Adaptive Physical Layer Network Coding for Wireless Two-way Relaying

    Full text link
    The analysis of modulation schemes for the physical layer network-coded two way relaying scenario is presented which employs two phases: Multiple access (MA) phase and Broadcast (BC) phase. It was shown by Koike-Akino et. al. that adaptively changing the network coding map used at the relay according to the channel conditions greatly reduces the impact of multiple access interference which occurs at the relay during the MA phase. Depending on the signal set used at the end nodes, deep fades occur for a finite number of channel fade states referred as the singular fade states. The singular fade states fall into the following two classes: The ones which are caused due to channel outage and whose harmful effect cannot be mitigated by adaptive network coding are referred as the \textit{non-removable singular fade states}. The ones which occur due to the choice of the signal set and whose harmful effects can be removed by a proper choice of the adaptive network coding map are referred as the \textit{removable} singular fade states. In this paper, we derive an upper bound on the average end-to-end Symbol Error Rate (SER), with and without adaptive network coding at the relay, for a Rician fading scenario. It is shown that without adaptive network coding, at high Signal to Noise Ratio (SNR), the contribution to the end-to-end SER comes from the following error events which fall as SNR1\text{SNR}^{-1}: the error events associated with the removable singular fade states, the error events associated with the non-removable singular fade states and the error event during the BC phase. In contrast, for the adaptive network coding scheme, the error events associated with the removable singular fade states contributing to the average end-to-end SER fall as SNR2\text{SNR}^{-2} and as a result the adaptive network coding scheme provides a coding gain over the case when adaptive network coding is not used.Comment: 10 pages, 5 figure

    Physical-Layer Cooperation in Coded OFDM Relaying Systems

    Get PDF
    Mobile communication systems nowadays require ever-increasing data rate and coverage of wide areas. One promising approach to achieve this goal is the application of cooperative communications enabled by introducing intermediate nodes known as relays to support the transmission between terminals. By processing and forwarding the receive message at the relays, the path-loss effect between the source and the destination is mitigated. One major limit factor for relay assisted communications is that a relay cannot transmit and receive using the same physical resources. Therefore, a half-duplex constraint is commonly assumed resulting in halved spectral efficiency. To combat this drawback, two-way relaying is introduced, where two sources exchange information with each. On the other hand, due to the physical limitation of the relays, e.g., wireless sensor nodes, it's not possible to implement multiple antennas at one relay, which prohibits the application of multiple-input multiple-output (MIMO) techniques. However, when treating multiple relays as a cluster, a virtual antenna array is formed to perform MIMO techniques in a distributed manner. %This thesis aims at designing efficient one-way and two-way relaying schemes. Specifically, existing schemes from the literature are improved and new schemes are developed with the emphasis on coded orthogonal frequency division multiplexing (OFDM) transmissions. Of special interest is the application of physical-layer network coding (PLNC) for two-phase two-way relaying. In this case, a network coded message is estimated from the superimposed receive signal at the relay using PLNC schemes. The schemes are investigated based on a mutual information analysis and their performance are improved by a newly proposed phase control strategy. Furthermore, performance degradation due to system asynchrony is mitigated depending on different PLNC schemes. When multiple relays are available, novel cooperation schemes allowing information exchange within the relay cluster are proposed that facilitate distributed MIMO reception and transmission. Additionally, smart signaling approaches are presented to enable the cooperation at different levels with the cooperation overhead taken into account adequately in system performance evaluation

    Two-Way Relaying Using Constant Envelope Modulation and Phase-Superposition-Phase-Forward

    Get PDF
    In this article, we propose the idea of phase-superposition-phase-forward (PSPF) relaying for 2-way 3-phasecooperative network involving constant envelope modulation with discriminator detection in a time-selectiveRayleigh fading environment. A semi-analytical expression for the bit-error-rate (BER) of this system is derived andthe results are verified by simulation. It was found that, compared to one-way relaying, 2-way relaying with PSPFsuffers only a moderate loss in energy efficiency (of 1.5 dB). On the other hand, PSPF improves the transmissionefficiency by 33%. Furthermore, we believe that the loss in transmission efficiency can be reduced if power isallocated to the different nodes in this cooperative network in an ‘optimal’ fashion. To further put the performanceof the proposed PSPF scheme into perspective, we compare it against a phase-combining phase-forwardtechnique that is based on decode-and-forward (DF) and multi-level CPFSK re-modulation at the relay. It wasfound that DF has a higher BER than PSPF and requires additional processing at the relay. It can thus beconcluded that the proposed PSPF technique is indeed the preferred way to maintain constant envelope signalingthroughout the signaling chain in a 2-way 3 phase relaying system
    corecore