2,358 research outputs found

    Programmable rate modem utilizing digital signal processing techniques

    Get PDF
    The engineering development study to follow was written to address the need for a Programmable Rate Digital Satellite Modem capable of supporting both burst and continuous transmission modes with either binary phase shift keying (BPSK) or quadrature phase shift keying (QPSK) modulation. The preferred implementation technique is an all digital one which utilizes as much digital signal processing (DSP) as possible. Here design tradeoffs in each portion of the modulator and demodulator subsystem are outlined, and viable circuit approaches which are easily repeatable, have low implementation losses and have low production costs are identified. The research involved for this study was divided into nine technical papers, each addressing a significant region of concern in a variable rate modem design. Trivial portions and basic support logic designs surrounding the nine major modem blocks were omitted. In brief, the nine topic areas were: (1) Transmit Data Filtering; (2) Transmit Clock Generation; (3) Carrier Synthesizer; (4) Receive AGC; (5) Receive Data Filtering; (6) RF Oscillator Phase Noise; (7) Receive Carrier Selectivity; (8) Carrier Recovery; and (9) Timing Recovery

    14-bit 2.2-MS/s sigma-delta ADC's

    Get PDF

    Interpolated-DFT-Based Fast and Accurate Amplitude and Phase Estimation for the Control of Power

    Full text link
    The quality of energy produced in renewable energy systems has to be at the high level specified by respective standards and directives. The estimation accuracy of grid signal parameters is one of the most important factors affecting this quality. This paper presents a method for a very fast and accurate amplitude and phase grid signal estimation using the Fast Fourier Transform procedure and maximum decay sidelobes windows. The most important features of the method are the elimination of the impact associated with the conjugate's component on the results and the straightforward implementation. Moreover, the measurement time is very short - even far less than one period of the grid signal. The influence of harmonics on the results is reduced by using a bandpass prefilter. Even using a 40 dB FIR prefilter for the grid signal with THD = 38%, SNR = 53 dB and a 20-30% slow decay exponential drift the maximum error of the amplitude estimation is approximately 1% and approximately 0.085 rad of the phase estimation in a real-time DSP system for 512 samples. The errors are smaller by several orders of magnitude for more accurate prefilters.Comment: in Metrology and Measurement Systems, 201

    One- and two-level filter-bank convolvers

    Get PDF
    In a recent paper, it was shown in detail that in the case of orthonormal and biorthogonal filter banks we can convolve two signals by directly convolving the subband signals and combining the results. In this paper, we further generalize the result. We also derive the statistical coding gain for the generalized subband convolver. As an application, we derive a novel low sensitivity structure for FIR filters from the convolution theorem. We define and derive a deterministic coding gain of the subband convolver over direct convolution for a fixed wordlength implementation. This gain serves as a figure of merit for the low sensitivity structure. Several numerical examples are included to demonstrate the usefulness of these ideas. By using the generalized polyphase representation, we show that the subband convolvers, linear periodically time varying systems, and digital block filtering can be viewed in a unified manner. Furthermore, the scheme called IFIR filtering is shown to be a special case of the convolver

    On the Polyphase Decomposition for Design of Generalized Comb Decimation Filters

    Full text link
    Generalized comb filters (GCFs) are efficient anti-aliasing decimation filters with improved selectivity and quantization noise (QN) rejection performance around the so called folding bands with respect to classical comb filters. In this paper, we address the design of GCF filters by proposing an efficient partial polyphase architecture with the aim to reduce the data rate as much as possible after the Sigma-Delta A/D conversion. We propose a mathematical framework in order to completely characterize the dependence of the frequency response of GCFs on the quantization of the multipliers embedded in the proposed filter architecture. This analysis paves the way to the design of multiplier-less decimation architectures. We also derive the impulse response of a sample 3rd order GCF filter used as a reference scheme throughout the paper.Comment: Submitted to IEEE TCAS-I, February 2007; 11 double-column pages, 9 figures, 1 tabl

    The Fundamentals of Radar with Applications to Autonomous Vehicles

    Get PDF
    Radar systems can be extremely useful for applications in autonomous vehicles. This paper seeks to show how radar systems function and how they can apply to improve autonomous vehicles. First, the basics of radar systems are presented to introduce the basic terminology involved with radar. Then, the topic of phased arrays is presented because of their application to autonomous vehicles. The topic of digital signal processing is also discussed because of its importance for all modern radar systems. Finally, examples of radar systems based on the presented knowledge are discussed to illustrate the effectiveness of radar systems in autonomous vehicles
    • 

    corecore