42,195 research outputs found

    Schrodinger Evolution for the Universe: Reparametrization

    Get PDF
    Starting from a generalized Hamilton-Jacobi formalism, we develop a new framework for constructing observables and their evolution in theories invariant under global time reparametrizations. Our proposal relaxes the usual Dirac prescription for the observables of a totally constrained system (`perennials') and allows one to recover the influential partial and complete observables approach in a particular limit. Difficulties such as the non-unitary evolution of the complete observables in terms of certain partial observables are explained as a breakdown of this limit. Identification of our observables (`mutables') relies upon a physical distinction between gauge symmetries that exist at the level of histories and states (`Type 1'), and those that exist at the level of histories and not states (`Type 2'). This distinction resolves a tension in the literature concerning the physical interpretation of the partial observables and allows for a richer class of observables in the quantum theory. There is the potential for the application of our proposal to the quantization of gravity when understood in terms of the Shape Dynamics formalism.Comment: 25 pages (including title page and references), 1 figur

    Coherent states and the quantization of 1+1-dimensional Yang-Mills theory

    Get PDF
    This paper discusses the canonical quantization of 1+1-dimensional Yang-Mills theory on a spacetime cylinder, from the point of view of coherent states, or equivalently, the Segal-Bargmann transform. Before gauge symmetry is imposed, the coherent states are simply ordinary coherent states labeled by points in an infinite-dimensional linear phase space. Gauge symmetry is imposed by projecting the original coherent states onto the gauge-invariant subspace, using a suitable regularization procedure. We obtain in this way a new family of "reduced" coherent states labeled by points in the reduced phase space, which in this case is simply the cotangent bundle of the structure group K. The main result explained here, obtained originally in a joint work of the author with B. Driver, is this: The reduced coherent states are precisely those associated to the generalized Segal-Bargmann transform for K, as introduced by the author from a different point of view. This result agrees with that of K. Wren, who uses a different method of implementing the gauge symmetry. The coherent states also provide a rigorous way of making sense out of the quantum Hamiltonian for the unreduced system. Various related issues are discussed, including the complex structure on the reduced phase space and the question of whether quantization commutes with reduction

    The new vertices and canonical quantization

    Full text link
    We present two results on the recently proposed new spin foam models. First, we show how a (slightly modified) restriction on representations in the EPRL model leads to the appearance of the Ashtekar-Barbero connection, thus bringing this model even closer to LQG. Second, we however argue that the quantization procedure used to derive the new models is inconsistent since it relies on the symplectic structure of the unconstraint BF theory.Comment: 16 pages, 1 figure; added subsection on ordering of Casimir operators, more details on imposing simplicity constraint

    Dynamical Aspects of Lie--Poisson Structures

    Full text link
    Quantum Groups can be constructed by applying the quantization by deformation procedure to Lie groups endowed with a suitable Poisson bracket. Here we try to develop an understanding of these structures by investigating dynamical systems which are associated with this bracket. We look at SU(2)SU(2) and SU(1,1)SU(1,1), as submanifolds of a 4--dimensional phase space with constraints, and deal with two classes of problems. In the first set of examples we consider some hamiltonian systems associated with Lie-Poisson structures and we investigate the equations of the motion. In the second set of examples we consider systems which preserve the chosen bracket, but are dissipative. However in this approach, they survive the quantization procedure.Comment: 17 pages, figures not include

    Computation of the Chiral Anomaly in the Bulk Quantization

    Full text link
    The bulk quantization method is used for regularizing a conventional four dimensional theory of massless fermions coupled to an external non-Abelian gauge field and for subsequently evaluating the associated Ward identity. As a result one obtains the well-known chiral anomaly.Comment: 19 page
    • 

    corecore